Solveeit Logo

Question

Physics Question on Electromagnetic waves

The difference between the apparent frequency of a source of sound as perceived by the observer during its approach and recession is 2%2\% of the frequency of the source. If the speed of sound in air is 300ms1 300\,ms^{-1} , the velocity of the source is

A

1.5ms11.5\,ms^{-1}

B

12ms112\,ms^{-1}

C

6ms16\, ms^{-1}

D

3ms13\,ms^{-1}

Answer

3ms13\,ms^{-1}

Explanation

Solution

When source approaches the observer, the apparent frequency heard by observer is n=n(vvvs)n'=n\left(\frac{v}{v-v_{s}}\right) ...(i) vs=v_{s}= speed of source of sound. During it recession, apparent frequency n=n(vv+vs)n''=n\left(\frac{v}{v +v_{s}}\right) ...(ii) Accordingly n=n=2100nn'=n''=\frac{2}{100} n (given) n(vvvs)=n(vv+vs)\therefore n\left(\frac{v}{v-v_{s}}\right)=n\left(\frac{v}{v +v_{s}}\right) =2100n=\frac{2}{100} n or v[v+vsv+vs(vvs)v+vs]=2100v\left[\frac{v +v_{s}-v+ v_{s}}{\left(v-v_{s}\right) v +v_{s}}\right]=\frac{2}{100} or 2vvs(vvs)(v+vs)=2100\frac{2 v v_{s}}{\left(v-v_{s}\right)\left(v+ v_{s}\right)}=\frac{2}{100} or 100vvs=v2vs2100\, v v_{s}=v^{2}-v_{s}^{2} But speed of sound in air v=300m/sv=300\, m / s 30000vs=(300)2vs2\therefore 30000\, v_{s}=(300)^{2}-v_{s}^{2} vs2+30000vs90000=0\Rightarrow v_{s}^{2}+30000\, v_{s}-90000=0 vs=30000±(30000)2+4×900002\therefore v_{s}=\frac{-30000 \pm \sqrt{(30000)^{2}+4 \times 90000}}{2} =30000±300062=\frac{-30000 \pm 30006}{2} =62=3ms1=\frac{6}{2}=3\, ms ^{-1}