Solveeit Logo

Question

Question: The difference between \(\Delta {\text{H}}\) and \(\Delta {\text{U}}\) for the combustion reaction o...

The difference between ΔH\Delta {\text{H}} and ΔU\Delta {\text{U}} for the combustion reaction of benzene at 127C{127^\circ }{\text{C}} is:
(A) -200R
(B) -600R
(C) 200R
(D) 600R

Explanation

Solution

Combustion is a high temperature exothermic chemical reaction involving a hydrocarbon or organic molecule reacting with oxygen to give carbon dioxide, water and evolution of heat. For example, the combustion of carbon can be expressed as:
C(s) + O2(g)CO2(g){\text{C(s) + }}{{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{C}}{{\text{O}}_{\text{2}}}{\text{(g)}}
The change in enthalpy when one mole of a substance undergoes complete combustion is termed as enthalpy of combustion.
The enthalpy change ΔH\Delta {\text{H}} of a chemical reaction is related to the internal energy change ΔU\Delta {\text{U}} at constant pressure P with volume change ΔV\Delta {\text{V}} by the relation:
ΔH = ΔU + PΔV\Delta {\text{H = }}\Delta {\text{U + P}}\Delta {\text{V}}

Complete step by step answer:
We need to find out the difference between ΔH\Delta {\text{H}} and ΔU\Delta {\text{U}} for the combustion reaction of benzene at 127C{127^\circ }{\text{C}} .
For an ideal gas, PV = nRT{\text{PV = nRT}} , R is the gas constant and T is the temperature.
For reactants, PVr = nrRT{\text{P}}{{\text{V}}_{\text{r}}}{\text{ = }}{{\text{n}}_{\text{r}}}{\text{RT}} at constant T and P.
For products, PVp = npRT{\text{P}}{{\text{V}}_{\text{p}}}{\text{ = }}{{\text{n}}_{\text{p}}}{\text{RT}} at constant T and P.
Here, nr{{\text{n}}_{\text{r}}} and np{{\text{n}}_{\text{p}}}are the number of moles of reactants and products respectively and Vr{{\text{V}}_{\text{r}}} and Vp{{\text{V}}_{\text{p}}} are the volume of reactants and products respectively.
Therefore, by subtraction we will get,

P(Vp - Vr) = (npnr)RT PΔV = ΔngRT  {\text{P}}\left( {{{\text{V}}_{\text{p}}}{\text{ - }}{{\text{V}}_{\text{r}}}} \right){\text{ = }}\left( {{{\text{n}}_{\text{p}}} - {{\text{n}}_{\text{r}}}} \right){\text{RT}} \\\ \Rightarrow {\text{P}}\Delta {\text{V = }}\Delta {{\text{n}}_{\text{g}}}{\text{RT}} \\\

Here, Δng\Delta {{\text{n}}_{\text{g}}} is the difference in the number of moles of gaseous products and reactants.
Therefore, ΔH = ΔU + ΔngRT\Delta {\text{H = }}\Delta {\text{U + }}\Delta {{\text{n}}_{\text{g}}}{\text{RT}}
Now, the reaction for combustion of benzene (C6H6)\left( {{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{6}}}} \right) is:
2C6H6(l)+15O2(g)12CO2(g)+6H2O(l){\text{2}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{6}}}\left( {\text{l}} \right) + 15{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) \to 12{\text{C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) + 6{{\text{H}}_{\text{2}}}{\text{O}}\left( {\text{l}} \right)
Or, C6H6(l)+7.5O2(g)6CO2(g)+3H2O(l){{\text{C}}_{\text{6}}}{{\text{H}}_{\text{6}}}\left( {\text{l}} \right) + 7.5{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) \to 6{\text{C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) + 3{{\text{H}}_{\text{2}}}{\text{O}}\left( {\text{l}} \right)
Here,
Δng=67.5 Δng=1.5  \Delta {{\text{n}}_{\text{g}}} = 6 - 7.5 \\\ \Rightarrow \Delta {{\text{n}}_{\text{g}}} = - 1.5 \\\
Temperature,
T=127C T=(127+273)K T=400K  {\text{T}} = {127^\circ }{\text{C}} \\\ \Rightarrow {\text{T}} = \left( {127 + 273} \right){\text{K}} \\\ \Rightarrow {\text{T}} = 400{\text{K}} \\\
Using the relation ΔH = ΔU + ΔngRT\Delta {\text{H = }}\Delta {\text{U + }}\Delta {{\text{n}}_{\text{g}}}{\text{RT}} , we have
ΔH = ΔU + (1.5)×R×400 ΔH - ΔU = - 1.5×400R ΔH - ΔU = 600R  \Delta {\text{H = }}\Delta {\text{U + }}\left( { - 1.5} \right) \times {\text{R}} \times 400 \\\ \Rightarrow \Delta {\text{H - }}\Delta {\text{U = - 1}}{\text{.5}} \times {\text{400R}} \\\ \Rightarrow \Delta {\text{H - }}\Delta {\text{U = }} - 600{\text{R}} \\\

So, the correct answer is B.

Note: When the change in volume is zero i.e., ΔV=0\Delta {\text{V}} = 0 or when none of the reactants or products are in gaseous states or when the number of moles of reactants is equal to the number of moles of products (Δng=0)\left( {\Delta {{\text{n}}_{\text{g}}} = 0} \right) , then change in enthalpy is equal to change in internal energy, i.e., ΔH = ΔU\Delta {\text{H = }}\Delta {\text{U}} . When Δng\Delta {{\text{n}}_{\text{g}}} is positive, ΔH > ΔU\Delta {\text{H > }}\Delta {\text{U}} and when Δng\Delta {{\text{n}}_{\text{g}}} is negative, ΔH < ΔU\Delta {\text{H < }}\Delta {\text{U}} .