Solveeit Logo

Question

Physics Question on Units and measurement

The diameter of a sphere is measured using a vernier caliper whose 9 divisions of main scale are equal to 10 divisions of vernier scale. The shortest division on the main scale is equal to l mm. The main scale reading is 2 cm and second division of vernier scale coincides with a division on main scale. If mass of the sphere is 8.635 g, the density of the sphere is:

A

2.5g/cm32.5 \, \text{g/cm}^3

B

1.7g/cm31.7 \, \text{g/cm}^3

C

2.2g/cm32.2 \, \text{g/cm}^3

D

2.0g/cm32.0 \, \text{g/cm}^3

Answer

2.0g/cm32.0 \, \text{g/cm}^3

Explanation

Solution

Given:

9 MSD=10 VSD.9 \text{ MSD} = 10 \text{ VSD}.

The least count (LC) is:

LC=1 MSD1 VSD.\text{LC} = 1 \text{ MSD} - 1 \text{ VSD}.

LC=1 MSD910 MSD=110 MSD.\text{LC} = 1 \text{ MSD} - \frac{9}{10} \text{ MSD} = \frac{1}{10} \text{ MSD}.

LC=0.01cm.\text{LC} = 0.01 \, \text{cm}.

Reading of the diameter:

Diameter=MSR+LC×VSR.\text{Diameter} = \text{MSR} + \text{LC} \times \text{VSR}.

Diameter=2cm+(0.01)×(2)=2.02cm.\text{Diameter} = 2 \, \text{cm} + (0.01) \times (2) = 2.02 \, \text{cm}.

The volume of the sphere is:

V=43π(d2)3=43π(2.022)3.V = \frac{4}{3} \pi \left( \frac{d}{2} \right)^3 = \frac{4}{3} \pi \left( \frac{2.02}{2} \right)^3.

V=43π(1.01)3=4.32cm3.V = \frac{4}{3} \pi (1.01)^3 = 4.32 \, \text{cm}^3.

The density is:

Density=MassVolume=8.6354.32.\text{Density} = \frac{\text{Mass}}{\text{Volume}} = \frac{8.635}{4.32}.

Density1.998g/cm32.00g/cm3.\text{Density} \approx 1.998 \, \text{g/cm}^3 \approx 2.00 \, \text{g/cm}^3.

Final Answer: 2.0 g/cm 3.