Solveeit Logo

Question

Question: The \(\dfrac{{d\left( {{{\cos }^{ - 1}}\sqrt {\cos x} } \right)}}{{dx}} = \) A. \(\dfrac{1}{2}\sqr...

The d(cos1cosx)dx=\dfrac{{d\left( {{{\cos }^{ - 1}}\sqrt {\cos x} } \right)}}{{dx}} =
A. 12secx+1\dfrac{1}{2}\sqrt {\sec x + 1}
B. secx+1\sqrt {\sec x + 1}
C. 12secx+1- \dfrac{1}{2}\sqrt {\sec x + 1}
D. secx+1- \sqrt {\sec x + 1}

Explanation

Solution

We are given with a function cos1cosx{\cos ^{ - 1}}\sqrt {\cos x} , we need to differentiate it with respect to xx, to get the results. And for that we would use the chain rule of differentiation, in which we would go step by step differentiating the values and then rejoin all the values in order to get the desired result of the function.

Formula used:
d(cos1x)dx=11x2\dfrac{{d\left( {{{\cos }^{ - 1}}x} \right)}}{{dx}} = \dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}
dxndx=nxn1\Rightarrow \dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}
dcosxdx=sinx\Rightarrow \dfrac{{d\cos x}}{{dx}} = - \sin x
dydx=dydv×dvdu×dudx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dv}} \times \dfrac{{dv}}{{du}} \times \dfrac{{du}}{{dx}}
1cosx=secx\Rightarrow \dfrac{1}{{\cos x}} = \sec x
sin2x+cos2x=1\Rightarrow {\sin ^2}x + {\cos ^2}x = 1
12cos2x=(1cosx)(1+cosx)\Rightarrow {1^2} - {\cos ^2}x = \left( {1 - \cos x} \right)\left( {1 + \cos x} \right)

Complete step by step answer:
We are given with a function cos1cosx{\cos ^{ - 1}}\sqrt {\cos x} , considering the value of cos1cosx{\cos ^{ - 1}}\sqrt {\cos x} to be yy, so the function becomes:
y=cos1cosxy = {\cos ^{ - 1}}\sqrt {\cos x} ….(1)
Now, considering cosx\cos x to be u, and yy becomes:
y=cos1uy = {\cos ^{ - 1}}\sqrt u
Considering u\sqrt u to be v, and yy becomes:
y=cos1vy = {\cos ^{ - 1}}v
Now, differentiating yy with respect to v, we get:
dydv=d(cos1v)dv\dfrac{{dy}}{{dv}} = \dfrac{{d\left( {{{\cos }^{ - 1}}v} \right)}}{{dv}}
From the formula of differentiation, we know that d(cos1x)dx=11x2\dfrac{{d\left( {{{\cos }^{ - 1}}x} \right)}}{{dx}} = \dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}, so substituting this in the above value, we get:
dydv=11v2\dfrac{{dy}}{{dv}} = \dfrac{{ - 1}}{{\sqrt {1 - {v^2}} }}
Substituting the value of v, we get:
dydv=11(u)2=11u\dfrac{{dy}}{{dv}} = \dfrac{{ - 1}}{{\sqrt {1 - {{\left( {\sqrt u } \right)}^2}} }} = \dfrac{{ - 1}}{{\sqrt {1 - u} }}
Substituting the value of u, we get:
dydv=11u=11cosx\dfrac{{dy}}{{dv}} = \dfrac{{ - 1}}{{\sqrt {1 - u} }} = \dfrac{{ - 1}}{{\sqrt {1 - \cos x} }} ……..(2)

Since, we had v=uv = \sqrt u , so differentiating vv with respect to uu, we get:
dvdu=dudu=du12du\dfrac{{dv}}{{du}} = \dfrac{{d\sqrt u }}{{du}} = \dfrac{{d{u^{\dfrac{1}{2}}}}}{{du}}
Since, we know that dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}, according to this, our value becomes:
dvdu=12u121=12u12=12u12=12u\dfrac{{dv}}{{du}} = \dfrac{1}{2}{u^{\dfrac{1}{2} - 1}} = \dfrac{1}{2}{u^{ - \dfrac{1}{2}}} = \dfrac{1}{{2{u^{\dfrac{1}{2}}}}} = \dfrac{1}{{2\sqrt u }}
dvdu=12u\Rightarrow \dfrac{{dv}}{{du}} = \dfrac{1}{{2\sqrt u }}
Substituting the value of u, we get:
dvdu=12cosx\Rightarrow \dfrac{{dv}}{{du}} = \dfrac{1}{{2\sqrt {\cos x} }} ……..(3)
Now, we also had u=cosxu = \cos x, so differentiating uu with respect to xx, we get:
dudx=dcosxdx\dfrac{{du}}{{dx}} = \dfrac{{d\cos x}}{{dx}}
Since, we know that dcosxdx=sinx\dfrac{{d\cos x}}{{dx}} = - \sin x, according to this, our value becomes:
dudx=sinx\dfrac{{du}}{{dx}} = - \sin x ……..(4)
Now, for the equation 1, y=cos1cosxy = {\cos ^{ - 1}}\sqrt {\cos x} , the chain rule of differentiation can be written as:
dydx=dydv×dvdu×dudx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dv}} \times \dfrac{{dv}}{{du}} \times \dfrac{{du}}{{dx}}
Since, we have all the differentiated values, so substituting equation 2,3 and 4 in the above equation and we get:
dydx=dydv×dvdu×dudx dydx=11cosx×12cosx×(sinx) \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dv}} \times \dfrac{{dv}}{{du}} \times \dfrac{{du}}{{dx}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{\sqrt {1 - \cos x} }} \times \dfrac{1}{{2\sqrt {\cos x} }} \times \left( { - \sin x} \right) \\\
dydx=sinx2cosx1cosx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sin x}}{{2\sqrt {\cos x} \sqrt {1 - \cos x} }} …..(5)

From the trigonometric identities, we know that sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1:
So, subtracting both sides by cos2x{\cos ^2}x:
sin2x+cos2xcos2x=1cos2x{\sin ^2}x + {\cos ^2}x - {\cos ^2}x = 1 - {\cos ^2}x
sin2x=1cos2x\Rightarrow {\sin ^2}x = 1 - {\cos ^2}x
Taking square root both the sides:
sin2x=1cos2x sinx=1cos2x \Rightarrow \sqrt {{{\sin }^2}x} = \sqrt {1 - {{\cos }^2}x} \\\ \Rightarrow \sin x = \sqrt {1 - {{\cos }^2}x} \\\
Substituting the value of sinx\sin x in equation 5:
dydx=1cos2x2cosx1cosx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt {1 - {{\cos }^2}x} }}{{2\sqrt {\cos x} \sqrt {1 - \cos x} }}
dydx=12cos2x2cosx1cosx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt {{1^2} - {{\cos }^2}x} }}{{2\sqrt {\cos x} \sqrt {1 - \cos x} }}
Since, we can see that 12cos2x{1^2} - {\cos ^2}x is in the form of a2b2{a^2} - {b^2} that can be splitted as a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right), similarly for 12cos2x=(1cosx)(1+cosx){1^2} - {\cos ^2}x = \left( {1 - \cos x} \right)\left( {1 + \cos x} \right).

Now, the equation becomes:
dydx=(1cosx)(1+cosx)2cosx1cosx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt {\left( {1 - \cos x} \right)\left( {1 + \cos x} \right)} }}{{2\sqrt {\cos x} \sqrt {1 - \cos x} }}
Splitting out the roots:
dydx=(1cosx)(1+cosx)2cosx1cosx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt {\left( {1 - \cos x} \right)} \sqrt {\left( {1 + \cos x} \right)} }}{{2\sqrt {\cos x} \sqrt {1 - \cos x} }}
Cancelling the common terms:
dydx=(1+cosx)2cosx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt {\left( {1 + \cos x} \right)} }}{{2\sqrt {\cos x} }}
dydx=12(1+cosx)cosx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{2}\dfrac{{\sqrt {\left( {1 + \cos x} \right)} }}{{\sqrt {\cos x} }}
Taking roots common:
dydx=121+cosxcosx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{2}\sqrt {\dfrac{{1 + \cos x}}{{\cos x}}}
dydx=121cosx+cosxcosx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{2}\sqrt {\dfrac{1}{{\cos x}} + \dfrac{{\cos x}}{{\cos x}}}
dydx=121cosx+1\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{2}\sqrt {\dfrac{1}{{\cos x}} + 1}
Since, we know that 1cosx=secx\dfrac{1}{{\cos x}} = \sec x, so the value becomes:
dydx=12secx+1\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{2}\sqrt {\sec x + 1}
Therefore, the result is dcos1cosxdx=12secx+1\dfrac{{d{{\cos }^{ - 1}}\sqrt {\cos x} }}{{dx}} = \dfrac{1}{2}\sqrt {\sec x + 1} .

Hence, option A is correct.

Note: The chain rule used for this question is dydx=dydv×dvdu×dudx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dv}} \times \dfrac{{dv}}{{du}} \times \dfrac{{du}}{{dx}}, similarly for other functions, we would shorter or longer chains in the same method. Remember to solve the differentiation step by step in order to avoid mistakes and for correct solving. It’s important to remember and implement the correct formulas in the places needed, a slight difference in the formula may lead to huge changes in the function.