Solveeit Logo

Question

Question: The determinant\(\left| \begin{matrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b...

The determinantabaα+bbcbα+caα+bbα+c0=0\left| \begin{matrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{matrix} \right| = 0 if

A

a, b, c are in A.P.

B

a, b, c are in G.P. or (xα)(x - \alpha) is a factor of ax2+2bx+c=0ax^{2} + 2bx + c = 0

C

a, b, c are in H.P.

D

α\alpha is a root of the equation

Answer

a, b, c are in G.P. or (xα)(x - \alpha) is a factor of ax2+2bx+c=0ax^{2} + 2bx + c = 0

Explanation

Solution

Applying R3R3αR1R2R_{3} \rightarrow R_{3} - \alpha R_{1} - R_{2}, we get

a & b & a\alpha + b \\ b & c & b\alpha + c \\ 0 & 0 & - a\alpha^{2} - b\alpha - b\alpha - c \end{matrix} \right| = 0$$ $$\Rightarrow - (a\alpha^{2} + 2b\alpha + c)(ac - b^{2}) = 0 \Rightarrow a\alpha^{2} + 2b\alpha + c = 0$$ or $b^{2} = ac$ $\Rightarrow$ $x = \alpha$ is a root of $ax^{2} + 2bx + c = 0$ or a, b, c are in G.P. $\Rightarrow (x - \alpha)$ is a factor of $ax^{2} + 2bx + c = 0$ or a, b, c are in G.P.