Question
Question: The determinant\(\left| \begin{matrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b...
The determinantabaα+bbcbα+caα+bbα+c0=0, if a,b,care in.
A
A. P.
B
G. P.
C
H. P.
D
None of these
Answer
G. P.
Explanation
Solution
Δ≡abaα+bbcbα+caα+bbα+c0
= ab0bc0aα+bbα+c−(aα2+2bα+c), by R3→R3−αR1−R2
= a{−c(aα2+2bα+c)−0}−b{−b(aα2+2bα+c)−0}
by expanding along C1
=(b2−ac)(aα2+2bα+c)
Thus, Δ=0, if either b2−ac=0or aα2+2bα+c=0
i.e., a,b,c in G.P. or aα2+2bα+c=0.
Trick: Put α=0, then the determinant
abbbccbc0=abbbcc00−c=−c(ac−b2)=0. Hence the result.