Solveeit Logo

Question

Question: The determinant\(\left| \begin{matrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b...

The determinantabaα+bbcbα+caα+bbα+c0=0\left| \begin{matrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{matrix} \right| = 0, if a,b,ca,b,care in.

A

A. P.

B

G. P.

C

H. P.

D

None of these

Answer

G. P.

Explanation

Solution

Δabaα+bbcbα+caα+bbα+c0\Delta \equiv \left| \begin{matrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{matrix} \right|

= abaα+bbcbα+c00(aα2+2bα+c)\left| \begin{matrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ 0 & 0 & - (a\alpha^{2} + 2b\alpha + c) \end{matrix} \right|, by R3R3αR1R2R_{3} \rightarrow R_{3} - \alpha R_{1} - R_{2}

= a{c(aα2+2bα+c)0}b{b(aα2+2bα+c)0}a\{ - c(a\alpha^{2} + 2b\alpha + c) - 0\} - b\{ - b(a\alpha^{2} + 2b\alpha + c) - 0\}

by expanding along C1C_{1}

=(b2ac)(aα2+2bα+c)= (b^{2} - ac)(a\alpha^{2} + 2b\alpha + c)

Thus, Δ=0\Delta = 0, if either b2ac=0b^{2} - ac = 0or aα2+2bα+c=0a\alpha^{2} + 2b\alpha + c = 0

i.e., a,b,ca,b,c in G.P. or aα2+2bα+c=0a\alpha^{2} + 2b\alpha + c = 0.

Trick: Put α=0\alpha = 0, then the determinant

abbbccbc0=ab0bc0bcc=c(acb2)=0\left| \begin{matrix} a & b & b \\ b & c & c \\ b & c & 0 \end{matrix} \right| = \left| \begin{matrix} a & b & 0 \\ b & c & 0 \\ b & c & - c \end{matrix} \right| = - c(ac - b^{2}) = 0. Hence the result.