Solveeit Logo

Question

Question: The determinant of \[\left| {\begin{array}{*{20}{c}}1&1&1\\\\{{\alpha ^2}}&{{\beta ^2}}&{{\gamma ^2}...

The determinant of \left| {\begin{array}{*{20}{c}}1&1&1\\\\{{\alpha ^2}}&{{\beta ^2}}&{{\gamma ^2}}\\\\{ - {\alpha ^2}}&{{\beta ^2}}&{{\gamma ^2}}\end{array}} \right| is divisible by?
A.βγ\beta - \gamma
B.α+β\alpha + \beta
C.βγ\beta \gamma
D.β/γ\beta /\gamma

Explanation

Solution

We will find the value of the determinant using the formula for the value of the determinant. We will factorize the value of the determinant that we have found. Then we will verify if any of the options given in the question is a factor of the determinant. If we find any match, then the determinant will be divisible by the term given in the option.

Formulas used:
We will use the following formulas:
The formula for the value of the determinant D = \left| {\begin{array}{*{20}{c}}a&b;&c;\\\d&e;&f;\\\g&h;&i;\end{array}} \right| is given byD=a(eifh)b(difg)+c(dheg)D = a\left( {ei - fh} \right) - b\left( {di - fg} \right) + c\left( {dh - eg} \right).
The difference of 2 square numbers is given by: a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right).

Complete step-by-step answer:
We will first calculate the determinant. We will substitute 1 for aa, 1 for bb, 1 for cc, α2{\alpha ^2} for dd, β2{\beta ^2} for ee, γ2{\gamma ^2} for ff, α2 - {\alpha ^2} for gg, β2{\beta ^2} for hh and γ2{\gamma ^2} for ii in the formula for the value of the determinant DD.
\begin{array}{l}D = \left| {\begin{array}{*{20}{c}}1&1&1\\\\{{\alpha ^2}}&{{\beta ^2}}&{{\gamma ^2}}\\\\{ - {\alpha ^2}}&{{\beta ^2}}&{{\gamma ^2}}\end{array}} \right|\\\ \Rightarrow D = 1\left( {{\beta ^2}{\gamma ^2} - {\gamma ^2}{\beta ^2}} \right) - 1\left( {{\alpha ^2}{\gamma ^2} - {\gamma ^2}\left( { - {\alpha ^2}} \right)} \right) + 1\left( {{\alpha ^2}{\beta ^2} - {\beta ^2}\left( { - {\alpha ^2}} \right)} \right)\end{array}
We will simplify the above equation. First, we will simplify the expressions inside the brackets:
D=1(β2γ2γ2β2)1(α2γ2γ2(α2))+1(α2β2β2(α2)) D=1(0)1(α2γ2+α2γ2)+1(α2β2+α2β2)\begin{array}{l} \Rightarrow D = 1\left( {{\beta ^2}{\gamma ^2} - {\gamma ^2}{\beta ^2}} \right) - 1\left( {{\alpha ^2}{\gamma ^2} - {\gamma ^2}\left( { - {\alpha ^2}} \right)} \right) + 1\left( {{\alpha ^2}{\beta ^2} - {\beta ^2}\left( { - {\alpha ^2}} \right)} \right)\\\ \Rightarrow D = 1\left( 0 \right) - 1\left( {{\alpha ^2}{\gamma ^2} + {\alpha ^2}{\gamma ^2}} \right) + 1\left( {{\alpha ^2}{\beta ^2} + {\alpha ^2}{\beta ^2}} \right)\end{array}
Adding the terms inside the brackets, we get
D=1(0)1(2α2γ2)+1(2α2β2)\Rightarrow D = 1\left( 0 \right) - 1\left( {2{\alpha ^2}{\gamma ^2}} \right) + 1\left( {2{\alpha ^2}{\beta ^2}} \right)
Solving the brackets, we get
D=02α2γ2+2α2β2 D=2α2β22α2γ2\begin{array}{l} \Rightarrow D = 0 - 2{\alpha ^2}{\gamma ^2} + 2{\alpha ^2}{\beta ^2}\\\ \Rightarrow D = 2{\alpha ^2}{\beta ^2} - 2{\alpha ^2}{\gamma ^2}\end{array}
We need to find out whether the determinant is divisible by any of the terms given in the options. For this, we will factorize the determinant. We will take out the term 2α22{\alpha ^2} as it is common to both the terms:
D=2α2(β2γ2)\Rightarrow D = 2{\alpha ^2}\left( {{\beta ^2} - {\gamma ^2}} \right)
We will substitute β\beta for aa and γ\gamma for bb in the formula for the difference of 2 square numbers:
D=2α2(β+γ)(βγ)\Rightarrow D = 2{\alpha ^2}\left( {\beta + \gamma } \right)\left( {\beta - \gamma } \right)
We can see from the above equation that βγ\beta - \gamma is a divisor of the determinant.
\therefore Option A is the correct option.

Note: We know that a factor of any number say nn is any number (or term) which when multiplied with another number (or term) gives us nn. Here we have found out the determinant. It is important for us to remember that if two rows or two columns are equal then the determinant will be 0.