Question
Question: The determinant \(\left| \begin{matrix} xp + y & x & y \\ yp + z & y & z \\ 0 & xp + y & yp + z \end...
The determinant xp+yyp+z0xyxp+yyzyp+z= 0, if
A
x, y, z are in A.P.
B
x, y, z are in G.P.
C
x, y, z are in H.P.
D
xy, yz, zx are in A.P.
Answer
x, y, z are in G.P.
Explanation
Solution
D = px+ypy+z0xypx+yyzpy+z= 0 Now R3 ® R3 – pR1 – R2
px + y & x & y \\ py + z & y & z \\ - (xp^{2} + 2py + z) & 0 & 0 \end{matrix} \right|$$ Ž (y<sup>2</sup> – xz) (p<sup>2</sup> x + 2py + z ) = 0 Ž y<sup>2</sup> = xz and x, y, z are in G.P. So choice (2) is true.