Solveeit Logo

Question

Question: The determinant \(\left| \begin{matrix} \cos(\theta + \varphi) & –\sin(\theta + \varphi) & \cos 2\va...

The determinant cos(θ+φ)sin(θ+φ)cos2φsinθcosθsinφcosθsinθcosφ\left| \begin{matrix} \cos(\theta + \varphi) & –\sin(\theta + \varphi) & \cos 2\varphi \\ \sin\theta & \cos\theta & \sin\varphi \\ –\cos\theta & \sin\theta & \cos\varphi \end{matrix} \right| is –

A

0

B

Independent of θ

C

Independent of φ

D

Independent of both θ and φ

Answer

Independent of θ

Explanation

Solution

∆ = cos (θ + φ). [ cos θ cos φ – sin θ sin φ]

+ sin(θ + φ).[sin θ cos φ + cos θ sin φ] + cos2φ.[sin2θ + cos2θ]

∆ = [cos2 (θ + φ) + sin2 (θ + φ)] + cos(2φ)

∆ = 1 + cos (2φ)

∴ ∆ is independent of θ