Question
Question: The determinant \(\left| \begin{matrix} \cos(\theta + \varphi) & –\sin(\theta + \varphi) & \cos 2\va...
The determinant cos(θ+φ)sinθ–cosθ–sin(θ+φ)cosθsinθcos2φsinφcosφ is –
A
0
B
Independent of θ
C
Independent of φ
D
Independent of both θ and φ
Answer
Independent of θ
Explanation
Solution
∆ = cos (θ + φ). [ cos θ cos φ – sin θ sin φ]
+ sin(θ + φ).[sin θ cos φ + cos θ sin φ] + cos2φ.[sin2θ + cos2θ]
∆ = [cos2 (θ + φ) + sin2 (θ + φ)] + cos(2φ)
∆ = 1 + cos (2φ)
∴ ∆ is independent of θ