Solveeit Logo

Question

Question: The determinant \(\left| \begin{matrix} \cos(\alpha + \beta) & –\sin(\alpha + \beta) & \cos 2\beta ...

The determinant

cos(α+β)sin(α+β)cos2βsinαcosαsinβcosαsinαcosβ\left| \begin{matrix} \cos(\alpha + \beta) & –\sin(\alpha + \beta) & \cos 2\beta \\ \sin\alpha & \cos\alpha & \sin\beta \\ –\cos\alpha & \sin\alpha & \cos\beta \end{matrix} \right|is independent of –

A

a

B

b

C

a and b

D

Neither a nor b

Answer

a

Explanation

Solution

cos (a + b)[cosa cosb – sina sinb] +

sin (a + b) [sin a cos b + sin b cos a] +cos2b (sin2a + cos2a)

= [cos2(a + b) + sin2(a + b)] + cos2b

= 1 + cos2b

\ D is independent of a