Question
Question: The determinant \(\left| \begin{matrix} \cos(\alpha + \beta) & –\sin(\alpha + \beta) & \cos 2\beta ...
The determinant
cos(α+β)sinα–cosα–sin(α+β)cosαsinαcos2βsinβcosβis independent of –
A
a
B
b
C
a and b
D
Neither a nor b
Answer
a
Explanation
Solution
cos (a + b)[cosa cosb – sina sinb] +
sin (a + b) [sin a cos b + sin b cos a] +cos2b (sin2a + cos2a)
= [cos2(a + b) + sin2(a + b)] + cos2b
= 1 + cos2b
\ D is independent of a