Solveeit Logo

Question

Question: The determinant \(\left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ a^{2}–bc & b^{2}–ca & c^{2}–ab \en...

The determinant 111abca2bcb2cac2ab\left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ a^{2}–bc & b^{2}–ca & c^{2}–ab \end{matrix} \right| is equal to -

A

0

B

1

C

–1

D

None

Answer

0

Explanation

Solution

∆ = 111abca2b2c2\left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2} \end{matrix} \right|111abcbccaab\left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \end{matrix} \right|

=111abca2b2c2\left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2} \end{matrix} \right|1abc\frac{1}{abc} abca2b2c2abcbcacab\left| \begin{matrix} a & b & c \\ a^{2} & b^{2} & c^{2} \\ abc & bca & cab \end{matrix} \right|

=111abca2b2c2\left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2} \end{matrix} \right|abca2b2c2111\left| \begin{matrix} a & b & c \\ a^{2} & b^{2} & c^{2} \\ 1 & 1 & 1 \end{matrix} \right| = 0