Solveeit Logo

Question

Question: The determinant \(\left| \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{matrix} \right|\)is...

The determinant 111123136\left| \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{matrix} \right|is not equal to.

A

211223236\left| \begin{matrix} 2 & 1 & 1 \\ 2 & 2 & 3 \\ 2 & 3 & 6 \end{matrix} \right|

B

211323436\left| \begin{matrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 4 & 3 & 6 \end{matrix} \right|

C

121153196\left| \begin{matrix} 1 & 2 & 1 \\ 1 & 5 & 3 \\ 1 & 9 & 6 \end{matrix} \right|

D

3116231036\left| \begin{matrix} 3 & 1 & 1 \\ 6 & 2 & 3 \\ 10 & 3 & 6 \end{matrix} \right|

Answer

211223236\left| \begin{matrix} 2 & 1 & 1 \\ 2 & 2 & 3 \\ 2 & 3 & 6 \end{matrix} \right|

Explanation

Solution

111123136=211323436\left| \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{matrix} \right| = \left| \begin{matrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 4 & 3 & 6 \end{matrix} \right| by C1C1+C2C_{1} \rightarrow C_{1} + C_{2}

= a,b,ca,b,c, by C2C2+C3C_{2} \rightarrow C_{2} + C_{3}

= 3116231036\left| \begin{matrix} 3 & 1 & 1 \\ 6 & 2 & 3 \\ 10 & 3 & 6 \end{matrix} \right|, by C1C1+C2+C3C_{1} \rightarrow C_{1} + C_{2} + C_{3}.

But 211223236\neq \left| \begin{matrix} 2 & 1 & 1 \\ 2 & 2 & 3 \\ 2 & 3 & 6 \end{matrix} \right|.