Solveeit Logo

Question

Question: The determinant $\begin{vmatrix} ^{x}C_1 & ^{x}C_2 & ^{x}C_3 \\ ^{y}C_1 & ^{y}C_2 & ^{y}C_3 \\ ^{z}C...

The determinant xC1xC2xC3yC1yC2yC3zC1zC2zC3\begin{vmatrix} ^{x}C_1 & ^{x}C_2 & ^{x}C_3 \\ ^{y}C_1 & ^{y}C_2 & ^{y}C_3 \\ ^{z}C_1 & ^{z}C_2 & ^{z}C_3 \end{vmatrix}

A

13\frac{1}{3}xyz(x+y)(y+z)(z+x)

B

14\frac{1}{4}xyz(x+y-z)(y+z-x)

C

112\frac{1}{12}xyz(x-y)(y-z)(z-x)

D

none

Answer

112xyz(xy)(yz)(zx)\frac{1}{12}xyz(x-y)(y-z)(z-x)

Explanation

Solution

The given determinant is

xC1xC2xC3yC1yC2yC3zC1zC2zC3\begin{vmatrix} {^xC_1} & {^xC_2} & {^xC_3} \\ {^yC_1} & {^yC_2} & {^yC_3} \\ {^zC_1} & {^zC_2} & {^zC_3} \end{vmatrix}

Recall that

nC1=n,nC2=n(n1)2,nC3=n(n1)(n2)6.{^nC_1}=n,\quad {^nC_2}=\frac{n(n-1)}{2},\quad {^nC_3}=\frac{n(n-1)(n-2)}{6}.

Thus, the matrix becomes

(xx(x1)2x(x1)(x2)6yy(y1)2y(y1)(y2)6zz(z1)2z(z1)(z2)6).\begin{pmatrix} x & \dfrac{x(x-1)}{2} & \dfrac{x(x-1)(x-2)}{6}\\[1mm] y & \dfrac{y(y-1)}{2} & \dfrac{y(y-1)(y-2)}{6}\\[1mm] z & \dfrac{z(z-1)}{2} & \dfrac{z(z-1)(z-2)}{6} \end{pmatrix}.

Step 1. Factor out xx, yy, zz from rows 1, 2, 3 respectively:

=xyz1x12(x1)(x2)61y12(y1)(y2)61z12(z1)(z2)6.= x\,y\,z \cdot \begin{vmatrix} 1 & \dfrac{x-1}{2} & \dfrac{(x-1)(x-2)}{6}\\[1mm] 1 & \dfrac{y-1}{2} & \dfrac{(y-1)(y-2)}{6}\\[1mm] 1 & \dfrac{z-1}{2} & \dfrac{(z-1)(z-2)}{6} \end{vmatrix}.

Step 2. Factor out constants from columns 2 and 3: factor 12\frac{1}{2} from column 2 and 16\frac{1}{6} from column 3. The overall factor becomes 1216=112\frac{1}{2}\cdot\frac{1}{6}=\frac{1}{12}:

=xyz121x1(x1)(x2)1y1(y1)(y2)1z1(z1)(z2).= \frac{x\,y\,z}{12}\cdot \begin{vmatrix} 1 & x-1 & (x-1)(x-2)\\[1mm] 1 & y-1 & (y-1)(y-2)\\[1mm] 1 & z-1 & (z-1)(z-2) \end{vmatrix}.

Step 3. Substitute u=x1,  v=y1,  w=z1u=x-1,\; v=y-1,\; w=z-1. Then the determinant becomes

D=xyz121uu(u+1)1vv(v+1)1ww(w+1).D = \frac{x\,y\,z}{12}\cdot \begin{vmatrix} 1 & u & u(u+1)\\[1mm] 1 & v & v(v+1)\\[1mm] 1 & w & w(w+1) \end{vmatrix}.

Subtract the first row from the others:

R2R2R1,R3R3R1,R_2 \to R_2 - R_1, \quad R_3 \to R_3 - R_1,

yielding

D=xyz121uu(u+1)0vuv(v+1)u(u+1)0wuw(w+1)u(u+1).D = \frac{x\,y\,z}{12}\cdot \begin{vmatrix} 1 & u & u(u+1)\\[1mm] 0 & v-u & v(v+1)-u(u+1)\\[1mm] 0 & w-u & w(w+1)-u(u+1) \end{vmatrix}.

Note that

v(v+1)u(u+1)=(v2+v)(u2+u)=(vu)(v+u+1),v(v+1)-u(u+1) = (v^2+v)-(u^2+u) = (v-u)(v+u+1), w(w+1)u(u+1)=(wu)(w+u+1).w(w+1)-u(u+1) = (w-u)(w+u+1).

Thus, the 2×2 determinant becomes

(vu)(wu)[(w+u+1)(v+u+1)]=(vu)(wu)(wv).(v-u)(w-u)\left[(w+u+1)-(v+u+1)\right] = (v-u)(w-u)(w-v).

Returning to original variables:

vu=(y1)(x1)=yx,wu=zx,wv=zy.v-u = (y-1) - (x-1)= y-x,\quad w-u = z-x,\quad w-v = z-y.

So,

D=xyz12(yx)(zx)(zy).D = \frac{x\,y\,z}{12}\,(y-x)(z-x)(z-y).

Observe that

(yx)(zx)(zy)=(xy)(yz)(zx)(y-x)(z-x)(z-y) = (x-y)(y-z)(z-x)

(up to rearrangement of factors, which does not change the product since the number of sign changes is even).

Final Answer:

112xyz(xy)(yz)(zx)\boxed{\frac{1}{12}\,x\,y\,z\,(x-y)(y-z)(z-x)}