Question
Mathematics Question on Sequence and series
The derivative oftan−1(1+x2−1x) with respect to tan−1(2x1−x21−2x2) at x=0
A
(A) 18
B
(B) 14
C
(C) 12
D
(D) 6
Answer
(B) 14
Explanation
Solution
Explanation:
Let y=tan−1(1+x2−1x) and z=tan−1(2x1−x21−2x2)Put x=tanθ in y, we gety=tan−1(sec2θ−1tanθ)=tan−1(secθ−1tanθ)=tan−1(tanθ2)=12tan−1x⇒dydx=12(1+x2)Put x=sinθ in z, we getz=tan−1(2sinθcos2θ1−2sin2θ)=tan−1(2sinθcosθcos2θ)=tan−1(tan2θ)=2θz=2sin−1x⇒dzdx=21−x2 Thus, dydz=dy/dxdz/dx=12(1+x2)×1−x22Atx=0,dydz=14