Solveeit Logo

Question

Mathematics Question on Logarithmic Differentiation

The derivative of y=xsinxy = x^{\sin\,x} is

A

cosxxsinx1\cos\,x\,x^{\sin\,x-1}

B

sin2x2xsinx1\frac{\sin\,2x}{2} x^{\sin\,x-1}

C

xsinx(cosxlogx+sinxx)x^{\sin\,x}\left(\cos\,x\, \log\,x+\frac{\sin\,x}{x}\right)

D

cosxlogx+sinxx\cos\,x\, \log\,x+\frac{\sin\,x}{x}

Answer

xsinx(cosxlogx+sinxx)x^{\sin\,x}\left(\cos\,x\, \log\,x+\frac{\sin\,x}{x}\right)

Explanation

Solution

The correct option is(C): xsinx(sinxx+logxcosx)x^{\sin x}\left(\frac{\sin x}{x}+\log x \cos x\right).

Given, y=xsinxy=x^{\sin x}
On taking log both sides, we get
logy=sinxlogx\log y=\sin x \log x
On differentiating both sides w.r.t. xx, we get
1ydydx=sinxddxlogx+logxddxsinx\frac{1}{y} \cdot \frac{d y}{d x}= \sin x \frac{d}{d x} \log x+\log x \frac{d}{d x} \sin x
1ydydx=sinx1x+logxcosx\Rightarrow \frac{1}{y} \cdot \frac{d y}{d x}=\sin x \cdot \frac{1}{x}+\log x \cdot \cos x
dydx=y(sinxx+logxcosx)\Rightarrow \frac{d y}{d x}=y\left(\frac{\sin x}{x}+\log x \cdot \cos x\right)
dydx=xsinx(sinxx+logxcosx)\Rightarrow \frac{d y}{d x}=x^{\sin x}\left(\frac{\sin x}{x}+\log x \cos x\right)