Question
Mathematics Question on Logarithmic Differentiation
The derivative of y=xsinx is
A
cosxxsinx−1
B
2sin2xxsinx−1
C
xsinx(cosxlogx+xsinx)
D
cosxlogx+xsinx
Answer
xsinx(cosxlogx+xsinx)
Explanation
Solution
The correct option is(C): xsinx(xsinx+logxcosx).
Given, y=xsinx
On taking log both sides, we get
logy=sinxlogx
On differentiating both sides w.r.t. x, we get
y1⋅dxdy=sinxdxdlogx+logxdxdsinx
⇒y1⋅dxdy=sinx⋅x1+logx⋅cosx
⇒dxdy=y(xsinx+logx⋅cosx)
⇒dxdy=xsinx(xsinx+logxcosx)