Solveeit Logo

Question

Question: The derivative of $Y = \log_{10}^{x} + \log_{x}^{10} + \log_{x}^{8} + \log_{10}^{10}$...

The derivative of Y=log10x+logx10+logx8+log1010Y = \log_{10}^{x} + \log_{x}^{10} + \log_{x}^{8} + \log_{10}^{10}

A

1xlog10log10x(logx)2\frac{1}{x \log 10} - \frac{\log 10}{x (\log x)^2}

B

log10(xlogx)2\frac{\log 10}{(x \log x)^2}

C

logxlog10\log x - \log 10

D

1xlog101xlogx\frac{1}{x \log 10} - \frac{1}{x \log x}

Answer

1xlog10log10x(logx)2\frac{1}{x \log 10} - \frac{\log 10}{x (\log x)^2}

Explanation

Solution

The derivative of Y=log10x+logx10+log108+log1010Y = \log_{10} x + \log_x 10 + \log_{10} 8 + \log_{10} 10 is calculated.

Using the change of base formula for logarithms, logba=lnalnb\log_b a = \frac{\ln a}{\ln b}: Y=lnxln10+ln10lnx+ln8ln10+ln10ln10Y = \frac{\ln x}{\ln 10} + \frac{\ln 10}{\ln x} + \frac{\ln 8}{\ln 10} + \frac{\ln 10}{\ln 10} Y=1ln10lnx+ln10(lnx)1+ln8ln10+1Y = \frac{1}{\ln 10} \ln x + \ln 10 (\ln x)^{-1} + \frac{\ln 8}{\ln 10} + 1

Differentiating term by term with respect to xx:

  1. ddx(1ln10lnx)=1ln101x=1xln10\frac{d}{dx} \left( \frac{1}{\ln 10} \ln x \right) = \frac{1}{\ln 10} \cdot \frac{1}{x} = \frac{1}{x \ln 10}
  2. ddx(ln10(lnx)1)=ln10(1)(lnx)21x=ln10x(lnx)2\frac{d}{dx} \left( \ln 10 (\ln x)^{-1} \right) = \ln 10 \cdot (-1) (\ln x)^{-2} \cdot \frac{1}{x} = -\frac{\ln 10}{x (\ln x)^2}
  3. ddx(ln8ln10)=0\frac{d}{dx} \left( \frac{\ln 8}{\ln 10} \right) = 0 (since it's a constant)
  4. ddx(1)=0\frac{d}{dx} (1) = 0 (since it's a constant)

Combining these terms, the derivative is: dYdx=1xln10ln10x(lnx)2\frac{dY}{dx} = \frac{1}{x \ln 10} - \frac{\ln 10}{x (\ln x)^2}

Assuming that log in the options refers to the natural logarithm (ln), this result exactly matches the first option. This suggests that the original question notation log10x\log_{10}^{x} was intended as log10x\log_{10} x, and logx8\log_{x}^{8} and log1010\log_{10}^{10} were intended as constants log108\log_{10} 8 and log1010\log_{10} 10 respectively, or that the terms with base 'x' were meant to be constants. The interpretation that yields a matching option is: Y=log10x+logx10+(constants)Y = \log_{10} x + \log_x 10 + (\text{constants})