Solveeit Logo

Question

Question: The derivative of the function f(x) = cos<sup>–1</sup>\(\left\{ \frac{1}{\sqrt{13}}(2\cos x - 3\sin...

The derivative of the function

f(x) = cos–1{113(2cosx3sinx)}\left\{ \frac{1}{\sqrt{13}}(2\cos x - 3\sin x) \right\}+ sin–1

{113(2sinx+3cosx)}\left\{ \frac{1}{\sqrt{13}}(2\sin x + 3\cos x) \right\}with respect to 1+x2\sqrt{1 + x^{2}} is –

A

2x

B

21+x22\sqrt{1 + x^{2}}

C

2x1+x2\frac{2}{x}\sqrt{1 + x^{2}}

D

2x1+x2\frac{2x}{\sqrt{1 + x^{2}}}

Answer

2x1+x2\frac{2}{x}\sqrt{1 + x^{2}}

Explanation

Solution

With cos θ = 213\frac{2}{\sqrt{13}}and sin θ =313\frac{3}{\sqrt{13}},

f(x) = cos–1(cos θ cos x – sin θ sin x) + sin–1

(cos θ sin x + sin θ cos x)

= cos–1(cos (θ + x) + sin–1(sin (θ + x))

= 2x + 2θ

By chain rule, the required derivative

= f '(x) 1ddx(1+x2)\frac{1}{\frac{d}{dx}\left( \sqrt{1 + x^{2}} \right)} = 2x1+x2\frac{2}{x}\sqrt{1 + x^{2}}