Solveeit Logo

Question

Question: The derivative of \({{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{x}^{2}}}-1}{x} \right)\) w. r. t \({{\tan ...

The derivative of tan1(1+x21x){{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{x}^{2}}}-1}{x} \right) w. r. t tan1(2x1x212x2){{\tan }^{-1}}\left( \dfrac{2x\sqrt{1-{{x}^{2}}}}{1-2{{x}^{2}}} \right) at x=0x=0 is
A. 14\dfrac{1}{4}
B. 18\dfrac{1}{8}
C. 12\dfrac{1}{2}
D. 1

Explanation

Solution

Hint: For the above question we will first simplify the given inverse trigonometric function by substituting the value of x'x' to the other trigonometric ratios and then we will differentiate it separately and take its ratio. We will get the required derivative. We will substitute x=tanθx=\tan \theta in tan1(1+x21x){{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{x}^{2}}}-1}{x} \right) and x=sinθx=\sin \theta in tan1(2x1x212x2){{\tan }^{-1}}\left( \dfrac{2x\sqrt{1-{{x}^{2}}}}{1-2{{x}^{2}}} \right).

Complete step-by-step answer:

We have been asked to find the derivative of tan1(1+x21x){{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{x}^{2}}}-1}{x} \right) with respect to tan1(2x1x212x2){{\tan }^{-1}}\left( \dfrac{2x\sqrt{1-{{x}^{2}}}}{1-2{{x}^{2}}} \right) at x=0x=0.
Let u=tan1(1+x21x)u={{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{x}^{2}}}-1}{x} \right).
Now, substitute x=tanθx=\tan \theta .
u=tan1(1+tan2θ1tanθ)\Rightarrow u={{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{\tan }^{2}}\theta }-1}{\tan \theta } \right)
Since, we know the identity 1+tan2θ=sec2θ1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta .
u=tan1(sec2θ1tanθ) =tan1(secθ1tanθ) =tan1(1cosθ1sinθcosθ) =tan1(1cosθcosθsinθcosθ) =tan1(1cosθsinθ) \begin{aligned} & \Rightarrow u={{\tan }^{-1}}\left( \dfrac{\sqrt{{{\sec }^{2}}\theta }-1}{\tan \theta } \right) \\\ & ={{\tan }^{-1}}\left( \dfrac{\sec \theta -1}{\tan \theta } \right) \\\ & ={{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\cos \theta }-1}{\dfrac{\sin \theta }{\cos \theta }} \right) \\\ & ={{\tan }^{-1}}\left( \dfrac{\dfrac{1-\cos \theta }{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }} \right) \\\ & ={{\tan }^{-1}}\left( \dfrac{1-\cos \theta }{\sin \theta } \right) \\\ \end{aligned}
On using the identity sinθ=2sinθ2cosθ2\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} and 1cosθ=2sin2θ21-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2}, we get,
=tan1(2sin2θ22sinθ2cosθ2) =tan1(tanθ2) \begin{aligned} & ={{\tan }^{-1}}\left( \dfrac{2{{\sin }^{2}}\dfrac{\theta }{2}}{2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right) \\\ & ={{\tan }^{-1}}\left( \tan \dfrac{\theta }{2} \right) \\\ \end{aligned}
We know that tan1tanx=x{{\tan }^{-1}}\tan x=x
tan1(1+x21x)=tan1(tanθ2)=θ2\Rightarrow {{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{x}^{2}}}-1}{x} \right)={{\tan }^{-1}}\left( \tan \dfrac{\theta }{2} \right)=\dfrac{\theta }{2}
Since, x=tanθx=\tan \theta
θ=tan1x tan1(1+x21x)=tan1x2 \begin{aligned} & \Rightarrow \theta ={{\tan }^{-1}}x \\\ & \Rightarrow {{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{x}^{2}}}-1}{x} \right)=\dfrac{{{\tan }^{-1}}x}{2} \\\ \end{aligned}
So, we have u=tan1x2u=\dfrac{{{\tan }^{-1}}x}{2}
Differentiating both side with respect to x and using formula ddxtan1x=11+x2\dfrac{d}{dx}{{\tan }^{-1}}x=\dfrac{1}{1+{{x}^{2}}}, we get,
dudx=12(1+x2)..........(1)\dfrac{du}{dx}=\dfrac{1}{2\left( 1+{{x}^{2}} \right)}..........\left( 1 \right)
Again, let v=tan1(2x1x212x2)v={{\tan }^{-1}}\left( \dfrac{2x\sqrt{1-{{x}^{2}}}}{1-2{{x}^{2}}} \right)
On substituting x=sinθx=\sin \theta , we get,
v=tan1(2sinθ1sin2θ12sin2θ) =tan1(2sinθcos2θ12sin2θ) =tan1(2sinθcosθ12sin2θ) \begin{aligned} & v={{\tan }^{-1}}\left( \dfrac{2\sin \theta \sqrt{1-{{\sin }^{2}}\theta }}{1-2{{\sin }^{2}}\theta } \right) \\\ & ={{\tan }^{-1}}\left( \dfrac{2\sin \theta \sqrt{{{\cos }^{2}}\theta }}{1-2{{\sin }^{2}}\theta } \right) \\\ & ={{\tan }^{-1}}\left( \dfrac{2\sin \theta \cos \theta }{1-2{{\sin }^{2}}\theta } \right) \\\ \end{aligned}
Since, we know that 2sinAcosA=sin2A2\sin A\cos A=\sin 2A and 12sin2A=cos2A1-2{{\sin }^{2}}A=\cos 2A.
=tan1(sin2θcos2θ) =tan1(tan2θ) \begin{aligned} & ={{\tan }^{-1}}\left( \dfrac{\sin 2\theta }{\cos 2\theta } \right) \\\ & ={{\tan }^{-1}}\left( \tan 2\theta \right) \\\ \end{aligned}
Since, we know that tan1tanx=x{{\tan }^{-1}}\tan x=x
tan1(tan2θ)=2θ\Rightarrow {{\tan }^{-1}}\left( \tan 2\theta \right)=2\theta
Since, we have supposed x=sinθx=\sin \theta . So, on taking sine inverse both sides we get sin1x=θ{{\sin }^{-1}}x=\theta .
Substituting the value of θ\theta we get,
v=2sin1xv=2{{\sin }^{-1}}x
Differentiating the above equation with respect to x, we get,
dvdx=21x2............(2)\dfrac{dv}{dx}=\dfrac{2}{\sqrt{1-{{x}^{2}}}}............\left( 2 \right)
Since, the derivative of sinx=11x2\sin x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}.
On dividing (1) by (2), we get,
dudx.dxdv=12(1+x2).1x22 dudv=141x2(1+x2) \begin{aligned} & \dfrac{du}{dx}.\dfrac{dx}{dv}=\dfrac{1}{2\left( 1+{{x}^{2}} \right)}.\dfrac{\sqrt{1-{{x}^{2}}}}{2} \\\ & \Rightarrow \dfrac{du}{dv}=\dfrac{1}{4}\dfrac{\sqrt{1-{{x}^{2}}}}{\left( 1+{{x}^{2}} \right)} \\\ \end{aligned}
Now, at x=0x=0
dudv=14101+0=14\dfrac{du}{dv}=\dfrac{1}{4}\dfrac{\sqrt{1-0}}{1+0}=\dfrac{1}{4}
Therefore, the derivative of tan1(1+x21x){{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{x}^{2}}}-1}{x} \right) with respect to tan1(2x1x212x2){{\tan }^{-1}}\left( \dfrac{2x\sqrt{1-{{x}^{2}}}}{1-2{{x}^{2}}} \right) at x=0x=0 is equal to 14\dfrac{1}{4}. So, the correct option of the given question is option A.

Note: Remember the point that if we have the expression 1+x2\sqrt{1+{{x}^{2}}}, then we must have to put x=tanθx=\tan \theta and if we have the expression like 1x2\sqrt{1-{{x}^{2}}}, then we must substitute x=sinθ or cosθx=\sin \theta \ or\ \cos \theta in order to simplify the given function.
Also, remember that if we have given two functions and we have been asked to find derivatives of one function with respect to another then we will separately find its derivative and then take its ratio.