Solveeit Logo

Question

Question: The derivative of \({{\tan }^{-1}}\left[ \dfrac{\left( \sqrt{1+{{x}^{2}}}-1 \right)}{x} \right]\) wi...

The derivative of tan1[(1+x21)x]{{\tan }^{-1}}\left[ \dfrac{\left( \sqrt{1+{{x}^{2}}}-1 \right)}{x} \right] with respect to tan1[(2x1x2)(12x2)]{{\tan }^{-1}}\left[ \dfrac{\left( 2x\sqrt{1-{{x}^{2}}} \right)}{\left( 1-2{{x}^{2}} \right)} \right] at x=0x=0 is:

  1. 18\dfrac{1}{8}
  2. 14\dfrac{1}{4}
  3. 12\dfrac{1}{2}
  4. 11
Explanation

Solution

Here in this question, we have been asked to find the derivative of tan1[(1+x21)x]{{\tan }^{-1}}\left[ \dfrac{\left( \sqrt{1+{{x}^{2}}}-1 \right)}{x} \right] with respect to tan1[(2x1x2)(12x2)]{{\tan }^{-1}}\left[ \dfrac{\left( 2x\sqrt{1-{{x}^{2}}} \right)}{\left( 1-2{{x}^{2}} \right)} \right] at x=0x=0 . For answering this question, we need to assume x=tanθx=\tan \theta and simplify the function tan1[(1+x21)x]{{\tan }^{-1}}\left[ \dfrac{\left( \sqrt{1+{{x}^{2}}}-1 \right)}{x} \right] and then assume x=sinθx=\sin \theta and simplify the function tan1[(2x1x2)(12x2)]{{\tan }^{-1}}\left[ \dfrac{\left( 2x\sqrt{1-{{x}^{2}}} \right)}{\left( 1-2{{x}^{2}} \right)} \right] .

Complete step by step solution:
Now considering from the question, we have been asked to find the derivative of tan1[(1+x21)x]{{\tan }^{-1}}\left[ \dfrac{\left( \sqrt{1+{{x}^{2}}}-1 \right)}{x} \right] with respect to tan1[(2x1x2)(12x2)]{{\tan }^{-1}}\left[ \dfrac{\left( 2x\sqrt{1-{{x}^{2}}} \right)}{\left( 1-2{{x}^{2}} \right)} \right] at x=0x=0 .
Let us assume x=tanθx=\tan \theta and u=tan1[(1+x21)x]u={{\tan }^{-1}}\left[ \dfrac{\left( \sqrt{1+{{x}^{2}}}-1 \right)}{x} \right] .
Now by considering these assumptions, we will have
u=tan1[(secθ1)tanθ] u=tan1[1cosθsinθ] \begin{aligned} & u={{\tan }^{-1}}\left[ \dfrac{\left( \sec \theta -1 \right)}{\tan \theta } \right] \\\ & \Rightarrow u={{\tan }^{-1}}\left[ \dfrac{1-\cos \theta }{\sin \theta } \right] \\\ \end{aligned} .
We know that 1+tan2θ=sec2θ1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta and cscθcotθ=tanθ2\csc \theta -\cot \theta =\tan \dfrac{\theta }{2} .
By using this we will have
u=tan1(tanθ2) u=θ2 u=12tan1x \begin{aligned} & u={{\tan }^{-1}}\left( \tan \dfrac{\theta }{2} \right) \\\ & \Rightarrow u=\dfrac{\theta }{2} \\\ & \Rightarrow u=\dfrac{1}{2}{{\tan }^{-1}}x \\\ \end{aligned} .
Now let us assume x=sinθ1x=\sin {{\theta }_{1}} and v=tan1[(2x1x2)(12x2)]v={{\tan }^{-1}}\left[ \dfrac{\left( 2x\sqrt{1-{{x}^{2}}} \right)}{\left( 1-2{{x}^{2}} \right)} \right] . By considering these assumptions, we will have
v=tan1[(sin2θ1)cos2θ1] v=tan1(tan2θ1) \begin{aligned} & v={{\tan }^{-1}}\left[ \dfrac{\left( \sin 2{{\theta }_{1}} \right)}{\cos 2{{\theta }_{1}}} \right] \\\ & \Rightarrow v={{\tan }^{-1}}\left( \tan 2{{\theta }_{1}} \right) \\\ \end{aligned} .
Since sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta and cos2θ=12sin2θ\cos 2\theta =1-2{{\sin }^{2}}\theta
By simplifying this further we will have v=2sin1xv=2{{\sin }^{-1}}x .
Now we need to find the value ofdudv\dfrac{du}{dv} for that we will use the chain rule given as dudv=dudx×dxdv\dfrac{du}{dv}=\dfrac{du}{dx}\times \dfrac{dx}{dv} and the formulae given as ddx(tan1x)=11+x2\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}} and ddx(sin1x)=11x2\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}} .
By using these things we will have dudv=12(ddxtan1x)dxd(2sin1x)\dfrac{du}{dv}=\dfrac{1}{2}\left( \dfrac{d}{dx}{{\tan }^{-1}}x \right)\dfrac{dx}{d\left( 2{{\sin }^{-1}}x \right)} .
By simplifying this further we will have
dudv=14(1+x2)(1(ddxsin1x)) dudv=1x24(1+x2) \begin{aligned} & \Rightarrow \dfrac{du}{dv}=\dfrac{1}{4\left( 1+{{x}^{2}} \right)}\left( \dfrac{1}{\left( \dfrac{d}{dx}{{\sin }^{-1}}x \right)} \right) \\\ & \Rightarrow \dfrac{du}{dv}=\dfrac{\sqrt{1-{{x}^{2}}}}{4\left( 1+{{x}^{2}} \right)} \\\ \end{aligned} .
At x=0x=0 we will have dudv=14\dfrac{du}{dv}=\dfrac{1}{4} .
Therefore we can conclude that the value of the derivative of tan1[(1+x21)x]{{\tan }^{-1}}\left[ \dfrac{\left( \sqrt{1+{{x}^{2}}}-1 \right)}{x} \right] with respect to tan1[(2x1x2)(12x2)]{{\tan }^{-1}}\left[ \dfrac{\left( 2x\sqrt{1-{{x}^{2}}} \right)}{\left( 1-2{{x}^{2}} \right)} \right] at x=0x=0 is given as 14\dfrac{1}{4} .
Hence we will mark the option “2” as correct.

Note: While answering questions of this type, we should be sure with the concepts that we are going to apply in between the process. Here we should be going step by step, this question looks to be complex one but by solving step by step it becomes simple.