Question
Mathematics Question on Differentiability
The derivative of tan−1[1+CosxSinx] with respect to tan−1[1+SinxCosx] is
A
2
B
-1
C
0
D
-2
Answer
-1
Explanation
Solution
Let
u=tan−1(1+cosxsinx),
v=tan−1(1+sinxcosx)
u=tan−1(1+2cos2x/2−12sinx/2⋅cosx/2)
=tan−1(tanx/2)=x/2
v=tan−1(cos22x+sin22x+2sin2x⋅cos2xcosx)
=tan−1((cos2x+sin2x)2(cos22x−sin22x))
=tan−1(cos2x+sin2xcos2x−sin2x)
=tan−1(1+tan2x1−tan2x)
=[tan−1(tan−1(4π−2π)]=(4π−2x)
Now, dxdu=21 and dxdv=21
⇒dvdu=dxdu×dvdx
=(21)×(−2)=−1