Solveeit Logo

Question

Mathematics Question on Differentiability

The derivative of tan1[Sinx1+Cosx]tan ^{-1}[\frac{Sin x}{1+ Cos x}] with respect to tan1[Cosx1+Sinx]tan^{-1}[\frac{Cos x}{1+Sin x}] is

A

2

B

-1

C

0

D

-2

Answer

-1

Explanation

Solution

Let
u=tan1(sinx1+cosx),u=\tan ^{-1}\left(\frac{\sin x}{1+\cos x}\right),
v=tan1(cosx1+sinx)v=\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)
u=tan1(2sinx/2cosx/21+2cos2x/21)u =\tan ^{-1}\left(\frac{2 \sin x / 2 \cdot \cos x / 2}{1+2 \cos ^{2} x / 2-1}\right)
=tan1(tanx/2)=x/2=\tan ^{-1}(\tan x / 2)=x / 2
v=tan1(cosxcos2x2+sin2x2+2sinx2cosx2)v=\tan ^{-1}\left(\frac{\cos x}{\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cdot \cos \frac{x}{2}}\right)
=tan1((cos2x2sin2x2)(cosx2+sinx2)2)=\tan ^{-1}\left(\frac{\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right)}{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}}\right)
=tan1(cosx2sinx2cosx2+sinx2)=\tan ^{-1}\left(\frac{\cos \frac{x}{2}-\sin \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}}\right)
=tan1(1tanx21+tanx2)=\tan ^{-1}\left(\frac{1-\tan \frac{x}{2}}{1+\tan \frac{x}{2}}\right)
=[tan1(tan1(π4π2)]=(π4x2)=\left[\tan ^{-1}\left(\tan ^{-1}\left(\frac{\pi}{4}-\frac{\pi}{2}\right)\right]=\left(\frac{\pi}{4}-\frac{x}{2}\right)\right.
Now, dudx=12\frac{du}{dx}=\frac{1}{2} and dvdx=12\frac{d v}{d x}=\frac{1}{2}
dudv=dudx×dxdv\Rightarrow \frac{d u}{d v}=\frac{d u}{d x} \times \frac{d x}{d v}
=(12)×(2)=1=\left(\frac{1}{2}\right) \times(-2)=-1