Solveeit Logo

Question

Question: The derivative of \( \sin x \) is equal to \( \cos x \) , \( \dfrac{d}{{dx}}\left( {\sin x} \right) ...

The derivative of sinx\sin x is equal to cosx\cos x , ddx(sinx)=cosx\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x and ddx[sinf(x)]=cosf(x)×ddx[f(x)]\dfrac{d}{{dx}}\left[ {\sin f\left( x \right)} \right] = \cos f\left( x \right) \times \dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] . Use the above information to find the derivatives of the following.
a. sinx2\sin {x^2}
b. sinxa\sin {x^a}
c. sin(logx)\sin \left( {\log x} \right)
d. sin25(xa){\sin ^{25}}\left( {{x^a}} \right)
e. sin(sinx7)\sin \left( {\sin {x^7}} \right) f. sin(ax+b)\sin \left( {ax + b} \right)

Explanation

Solution

Hint : The derivative of sine is cosine. But when the sine is applied to another function (can be exponential, logarithmic etc), the derivative will be different. Including the cosine of function, derivative of the function must also be multiplied. Derivatives of Exponential function, logarithmic function, linear function are different. Use this info and below formulas to answer the given question.
Formulas used:
1. ddx(logx)=1x\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}
2. ddx(xn)=n.xn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n.{x^{n - 1}}
3. ddx[f(x)]n=n.[f(x)]n1×ddxf(x)\dfrac{d}{{dx}}{\left[ {f\left( x \right)} \right]^n} = n.{\left[ {f\left( x \right)} \right]^{n - 1}} \times \dfrac{d}{{dx}}f\left( x \right)
4. ddx(ax+b)=a\dfrac{d}{{dx}}\left( {ax + b} \right) = a

Complete step by step solution:
We are given that ddx(sinx)=cosx\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x and ddx[sinf(x)]=cosf(x)×ddx[f(x)]\dfrac{d}{{dx}}\left[ {\sin f\left( x \right)} \right] = \cos f\left( x \right) \times \dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] .
Using this we have to find the derivatives of sine functions given.
a. sinx2\sin {x^2}
On comparing the given sine function with sinf(x)\sin f\left( x \right) , we get f(x)=x2f\left( x \right) = {x^2}
Therefore, ddx(sinx2)=cos(x2)×ddx(x2)\dfrac{d}{{dx}}\left( {\sin {x^2}} \right) = \cos \left( {{x^2}} \right) \times \dfrac{d}{{dx}}\left( {{x^2}} \right)
We know that ddx(xn)=n.xn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n.{x^{n - 1}} , here n = 2.
ddx(sinx2)=cos(x2)×(2×x21) ddx(sinx2)=cos(x2)×2x ddx(sinx2)=2x.cosx2  \Rightarrow \dfrac{d}{{dx}}\left( {\sin {x^2}} \right) = \cos \left( {{x^2}} \right) \times \left( {2 \times {x^{2 - 1}}} \right) \\\ \Rightarrow \dfrac{d}{{dx}}\left( {\sin {x^2}} \right) = \cos \left( {{x^2}} \right) \times 2x \\\ \therefore \dfrac{d}{{dx}}\left( {\sin {x^2}} \right) = 2x.\cos {x^2} \\\
b. sinxa\sin {x^a}
On comparing the given sine function with sinf(x)\sin f\left( x \right) , we get f(x)=xaf\left( x \right) = {x^a}
Therefore, ddx(sinxa)=cos(xa)×ddx(xa)\dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = \cos \left( {{x^a}} \right) \times \dfrac{d}{{dx}}\left( {{x^a}} \right)
We know that ddx(xn)=n.xn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n.{x^{n - 1}} , here n = a.
ddx(sinxa)=cos(xa)×(a×xa1) ddx(sinxa)=cos(xa)×a.xa1 ddx(sinxa)=a.xa1.cosxa  \Rightarrow \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = \cos \left( {{x^a}} \right) \times \left( {a \times {x^{a - 1}}} \right) \\\ \Rightarrow \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = \cos \left( {{x^a}} \right) \times a.{x^{a - 1}} \\\ \therefore \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = a.{x^{a - 1}}.\cos {x^a} \\\
c. sin(logx)\sin \left( {\log x} \right)
On comparing the given sine function with sinf(x)\sin f\left( x \right) , we get f(x)=logxf\left( x \right) = \log x
Therefore, ddx[sin(logx)]=cos(logx)×ddx(logx)\dfrac{d}{{dx}}\left[ {\sin \left( {\log x} \right)} \right] = \cos \left( {\log x} \right) \times \dfrac{d}{{dx}}\left( {\log x} \right)
We know that ddx(logx)=1x\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x} , so we are substituting this above.
ddx[sin(logx)]=cos(logx)×1x ddx[sin(logx)]=1x.cos(logx)  \dfrac{d}{{dx}}\left[ {\sin \left( {\log x} \right)} \right] = \cos \left( {\log x} \right) \times \dfrac{1}{x} \\\ \therefore \dfrac{d}{{dx}}\left[ {\sin \left( {\log x} \right)} \right] = \dfrac{1}{x}.\cos \left( {\log x} \right) \\\
d. sin25(xa){\sin ^{25}}\left( {{x^a}} \right)
We can write the given sine function also as (sinxa)25{\left( {\sin {x^a}} \right)^{25}} . It is in the form of [f(x)]n where f(x)=sinxa,n=25{\left[ {f\left( x \right)} \right]^n}{\text{ where f}}\left( x \right) = \sin {x^a},n = 25
We know that ddx[f(x)]n=n.[f(x)]n1×ddxf(x)\dfrac{d}{{dx}}{\left[ {f\left( x \right)} \right]^n} = n.{\left[ {f\left( x \right)} \right]^{n - 1}} \times \dfrac{d}{{dx}}f\left( x \right)
ddx[(sinxa)25]=25×(sinxa)251×ddx(sinxa)\dfrac{d}{{dx}}\left[ {{{\left( {\sin {x^a}} \right)}^{25}}} \right] = 25 \times {\left( {\sin {x^a}} \right)^{25 - 1}} \times \dfrac{d}{{dx}}\left( {\sin {x^a}} \right)
From the above second solution, we got ddx(sinxa)=a.xa1.cosxa\dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = a.{x^{a - 1}}.\cos {x^a}
ddx[(sinxa)25]=25×(sinxa)24×a×xa1×cosxa ddx[(sinxa)25]=25a.xa1.(sinxa)24cosxa  \dfrac{d}{{dx}}\left[ {{{\left( {\sin {x^a}} \right)}^{25}}} \right] = 25 \times {\left( {\sin {x^a}} \right)^{24}} \times a \times {x^{a - 1}} \times \cos {x^a} \\\ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\left( {\sin {x^a}} \right)}^{25}}} \right] = 25a.{x^{a - 1}}.{\left( {\sin {x^a}} \right)^{24}}\cos {x^a} \\\
e. sin(sinx7)\sin \left( {\sin {x^7}} \right)
On comparing the given sine function with sinf(x)\sin f\left( x \right) , we get f(x)=sinx7f\left( x \right) = \sin {x^7}
Therefore, ddx[sin(sinx7)]=cos(sinx7)×ddx(sinx7)\dfrac{d}{{dx}}\left[ {\sin \left( {\sin {x^7}} \right)} \right] = \cos \left( {\sin {x^7}} \right) \times \dfrac{d}{{dx}}\left( {\sin {x^7}} \right)
From the above second solution, we got ddx(sinxa)=a.xa1.cosxa\dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = a.{x^{a - 1}}.\cos {x^a} , here a = 7
ddx[sin(sinx7)]=cos(sinx7)×7×x71×cosx7 ddx[sin(sinx7)]=7x6.cos(sinx7)cosx7  \dfrac{d}{{dx}}\left[ {\sin \left( {\sin {x^7}} \right)} \right] = \cos \left( {\sin {x^7}} \right) \times 7 \times {x^{7 - 1}} \times \cos {x^7} \\\ \Rightarrow \dfrac{d}{{dx}}\left[ {\sin \left( {\sin {x^7}} \right)} \right] = 7{x^6}.\cos \left( {\sin {x^7}} \right)\cos {x^7} \\\
f. sin(ax+b)\sin \left( {ax + b} \right)
On comparing the given sine function with sinf(x)\sin f\left( x \right) , we get f(x)=ax+bf\left( x \right) = ax + b
Therefore, ddx[sin(ax+b)]=cos(ax+b)×ddx(ax+b)\dfrac{d}{{dx}}\left[ {\sin \left( {ax + b} \right)} \right] = \cos \left( {ax + b} \right) \times \dfrac{d}{{dx}}\left( {ax + b} \right)
We know that ddx(ax+b)=a\dfrac{d}{{dx}}\left( {ax + b} \right) = a
So on substituting the value, we get
ddx[sin(ax+b)]=cos(ax+b)×a ddx[sin(ax+b)]=a.cos(ax+b)   \dfrac{d}{{dx}}\left[ {\sin \left( {ax + b} \right)} \right] = \cos \left( {ax + b} \right) \times a \\\ \Rightarrow \dfrac{d}{{dx}}\left[ {\sin \left( {ax + b} \right)} \right] = a.\cos \left( {ax + b} \right) \;

Note : Be careful with the derivatives of exponential functions, linear functions, logarithmic functions etc. and we might confuse xa{x^a} with ax{a^x} , so be cautious about this as their derivatives are completely different. Derivative of xa{x^a} is a.xa1a.{x^{a - 1}} whereas derivative of ax{a^x} is axloga{a^x}\log a . Do not swap the base with exponent as you can see the result might completely go wrong.