Question
Question: The derivative of \( \sin x \) is equal to \( \cos x \) , \( \dfrac{d}{{dx}}\left( {\sin x} \right) ...
The derivative of sinx is equal to cosx , dxd(sinx)=cosx and dxd[sinf(x)]=cosf(x)×dxd[f(x)] . Use the above information to find the derivatives of the following.
a. sinx2
b. sinxa
c. sin(logx)
d. sin25(xa)
e. sin(sinx7) f. sin(ax+b)
Solution
Hint : The derivative of sine is cosine. But when the sine is applied to another function (can be exponential, logarithmic etc), the derivative will be different. Including the cosine of function, derivative of the function must also be multiplied. Derivatives of Exponential function, logarithmic function, linear function are different. Use this info and below formulas to answer the given question.
Formulas used:
1. dxd(logx)=x1
2. dxd(xn)=n.xn−1
3. dxd[f(x)]n=n.[f(x)]n−1×dxdf(x)
4. dxd(ax+b)=a
Complete step by step solution:
We are given that dxd(sinx)=cosx and dxd[sinf(x)]=cosf(x)×dxd[f(x)] .
Using this we have to find the derivatives of sine functions given.
a. sinx2
On comparing the given sine function with sinf(x) , we get f(x)=x2
Therefore, dxd(sinx2)=cos(x2)×dxd(x2)
We know that dxd(xn)=n.xn−1 , here n = 2.
⇒dxd(sinx2)=cos(x2)×(2×x2−1) ⇒dxd(sinx2)=cos(x2)×2x ∴dxd(sinx2)=2x.cosx2
b. sinxa
On comparing the given sine function with sinf(x) , we get f(x)=xa
Therefore, dxd(sinxa)=cos(xa)×dxd(xa)
We know that dxd(xn)=n.xn−1 , here n = a.
⇒dxd(sinxa)=cos(xa)×(a×xa−1) ⇒dxd(sinxa)=cos(xa)×a.xa−1 ∴dxd(sinxa)=a.xa−1.cosxa
c. sin(logx)
On comparing the given sine function with sinf(x) , we get f(x)=logx
Therefore, dxd[sin(logx)]=cos(logx)×dxd(logx)
We know that dxd(logx)=x1 , so we are substituting this above.
dxd[sin(logx)]=cos(logx)×x1 ∴dxd[sin(logx)]=x1.cos(logx)
d. sin25(xa)
We can write the given sine function also as (sinxa)25 . It is in the form of [f(x)]n where f(x)=sinxa,n=25
We know that dxd[f(x)]n=n.[f(x)]n−1×dxdf(x)
dxd[(sinxa)25]=25×(sinxa)25−1×dxd(sinxa)
From the above second solution, we got dxd(sinxa)=a.xa−1.cosxa
dxd[(sinxa)25]=25×(sinxa)24×a×xa−1×cosxa ⇒dxd[(sinxa)25]=25a.xa−1.(sinxa)24cosxa
e. sin(sinx7)
On comparing the given sine function with sinf(x) , we get f(x)=sinx7
Therefore, dxd[sin(sinx7)]=cos(sinx7)×dxd(sinx7)
From the above second solution, we got dxd(sinxa)=a.xa−1.cosxa , here a = 7
dxd[sin(sinx7)]=cos(sinx7)×7×x7−1×cosx7 ⇒dxd[sin(sinx7)]=7x6.cos(sinx7)cosx7
f. sin(ax+b)
On comparing the given sine function with sinf(x) , we get f(x)=ax+b
Therefore, dxd[sin(ax+b)]=cos(ax+b)×dxd(ax+b)
We know that dxd(ax+b)=a
So on substituting the value, we get
dxd[sin(ax+b)]=cos(ax+b)×a ⇒dxd[sin(ax+b)]=a.cos(ax+b)
Note : Be careful with the derivatives of exponential functions, linear functions, logarithmic functions etc. and we might confuse xa with ax , so be cautious about this as their derivatives are completely different. Derivative of xa is a.xa−1 whereas derivative of ax is axloga . Do not swap the base with exponent as you can see the result might completely go wrong.