Solveeit Logo

Question

Mathematics Question on Differentiability

The derivative of sinx3\sin \, x^3 w.r.t. cosx3\cos \, x^3 is equal to

A

cotx3 - \cot x^3

B

cotx3 \cot x^3

C

tanx3\tan x^3

D

tanx3 - \tan x^3

Answer

cotx3 - \cot x^3

Explanation

Solution

Let y=sinx3,dydx=cosx3.3x2y =\sin x^{3} , \therefore \frac{dy}{dx} = \cos x^{3} .3x^{2} z=cosx3dzdx=sinx3.3x2z =\cos x^{3} \frac{dz}{dx} = -\sin x^{3}.3x^{2} dydz=dy/dxdz/dx=cosx3sinx3=cotx3\therefore \frac{dy}{dz} = \frac{dy/dx}{dz/dx} = - \frac{\cos x^{3}}{\sin x^{3}} = - \cot x^{3}