Solveeit Logo

Question

Mathematics Question on Differentiability

The derivative of sin1(2x1x2){{\sin }^{-1}}(2x\sqrt{1-{{x}^{2}}}) with respect to sin1(3x4x3){{\sin }^{-1}}(3x-4{{x}^{3}}) is

A

23\frac{2}{3}

B

32\frac{3}{2}

C

12\frac{1}{2}

D

11

Answer

23\frac{2}{3}

Explanation

Solution

Let y=sin1(2x1x2)y={{\sin }^{-1}}(2x\sqrt{1-{{x}^{2}}}) ?. (i) and z=sin1(3x4x3)z={{\sin }^{-1}}(3x-4{{x}^{3}}) ...(ii)
Now, x=cosθx=cos\theta putting in E (i), we get y=sin1(2cosθ1cos2θ)y={{\sin }^{-1}}(2\cos \theta \sqrt{1-{{\cos }^{2}}\theta })
=sin1(2cosθsinθ)={{\sin }^{-1}}\,(2\cos \,\theta \,\sin \theta )
=sin1(sin2θ)={{\sin }^{-1}}(\sin 2\theta )
\Rightarrow y=2θy=2\theta
\Rightarrow y=2cos1xy=2{{\cos }^{-1}}x
Differentiating it w.r.t. θ\theta , we get dzdθ=3\frac{dz}{d\theta }=3 ...(iii)
Also, putting x=sinθx=sin\theta in E (ii), we get z=sin1(3sinθ4sin3θ)=sin1(sin3θ)z={{\sin }^{-1}}(3\sin \theta -4{{\sin }^{3}}\theta )={{\sin }^{-1}}(\sin 3\theta )
\therefore z=3θz=3\theta
Differentiating it w.r.t. θ\theta , we get dzdθ=3\frac{dz}{d\theta }=3 ...(iv) Now, dydz=dydθ.dθdz\frac{dy}{dz}=\frac{dy}{d\theta }.\frac{d\theta }{dz}
=2.13=23=2.\frac{1}{3}=\frac{2}{3}
\therefore d(sin12x1x2)d(sin1(3x4x3))=23\frac{d({{\sin }^{-1}}2x\sqrt{1-{{x}^{2}}})}{d({{\sin }^{-1}}(3x-4{{x}^{3}}))}=\frac{2}{3}