Question
Mathematics Question on Differentiability
The derivative of sin−1(2x1−x2) with respect to sin−1(3x−4x3) is
A
32
B
23
C
21
D
1
Answer
32
Explanation
Solution
Let y=sin−1(2x1−x2) ?. (i) and z=sin−1(3x−4x3) ...(ii)
Now, x=cosθ putting in E (i), we get y=sin−1(2cosθ1−cos2θ)
=sin−1(2cosθsinθ)
=sin−1(sin2θ)
⇒ y=2θ
⇒ y=2cos−1x
Differentiating it w.r.t. θ , we get dθdz=3 ...(iii)
Also, putting x=sinθ in E (ii), we get z=sin−1(3sinθ−4sin3θ)=sin−1(sin3θ)
∴ z=3θ
Differentiating it w.r.t. θ , we get dθdz=3 ...(iv) Now, dzdy=dθdy.dzdθ
=2.31=32
∴ d(sin−1(3x−4x3))d(sin−12x1−x2)=32