Solveeit Logo

Question

Question: The derivative of \[{{\sec }^{-1}}\left( \dfrac{1}{2{{x}^{2}}-1} \right)\] with respect to \[\sqrt{1...

The derivative of sec1(12x21){{\sec }^{-1}}\left( \dfrac{1}{2{{x}^{2}}-1} \right) with respect to 1x2\sqrt{1-{{x}^{2}}} at x=12x=\dfrac{1}{2}, is

Explanation

Solution

The differentiation of composite functions containing inverse and some algebraic function can be solved by some suitable substitution, which we can find by observing the algebraic function. Here by observation, we can see that x=cosθx=\,\cos \theta will work as it is clearly visible that on putting x=cosθx=\,\cos \theta , 2x212{{x}^{2}}-1 will change to x=cos2θx=\,\cos 2\theta .

Complete step by step solution:
For a function f(x)f(x) finding f(x)f'(x) or dydx\dfrac{dy}{dx} at a given point is called finding the derivative of f(x)f(x) at that point. dydx\dfrac{dy}{dx} or f(x)f'(x) represents the instantaneous rate of change of yy w.r.t xx.
Here in the given question, we have to find the derivative of a function w.r.t another function.
mathematically:
Let y=f(x)y\,=\,f(x) ; z=g(x)z\,=\,g(x) then dydz=dy/dxdz/dx=f(x)g(x)\dfrac{dy}{dz}\,\,=\,\,\dfrac{dy/dx}{dz/dx}\,\,\,=\,\,\,\dfrac{f'(x)}{g'(x)}.
Here we have y=sec1(12x21)y\,=\,\,{{\sec }^{-1}}\left( \dfrac{1}{2{{x}^{2}}-1} \right) and z=1x2z\,=\,\sqrt{1-{{x}^{2}}}.
to find: dydz\dfrac{dy}{dz}
Let’s solve dydx\dfrac{dy}{dx} and dzdx\dfrac{dz}{dx} separately.
First dydx\dfrac{dy}{dx}:
It will be quite convenient if we simplify the given inverse function instead of directly differentiating it using the chain rule.
By observing we can see that we should put x=cosθx=\,\cos \theta . Therefore yy becomes
y=sec1(12cos2θ1)y\,=\,\,\,{{\sec }^{-1}}\left( \dfrac{1}{2{{\cos }^{2}}\theta -1} \right)
As we know that cos2θ=cos2θsin2θ=2cos2θ1\cos 2\theta \,\,=\,\,{{\cos }^{2}}\theta \,-\,{{\sin }^{2}}\theta \,=\,\,2{{\cos }^{2}}\theta -1
Hence y=sec1(12cos2θ1)=sec1(1cos2θ)=sec1(sec2θ)=2θy\,=\,\,\,{{\sec }^{-1}}\left( \dfrac{1}{2{{\cos }^{2}}\theta -1} \right)\,\,\,=\,\,\,{{\sec }^{-1}}\left( \dfrac{1}{\cos 2\theta } \right)\,\,=\,\,{{\sec }^{-1}}\left( \sec 2\theta \right)\,\,=\,\,2\theta \,
As x=cosθx=\,\cos \theta alternatively θ=cos1x\theta \,\,=\,\,{{\cos }^{-1}}x
y=2θ=2cos1x\Rightarrow \,\,\,y\,\,=\,\,2\theta \,\,=\,\,2{{\cos }^{-1}}x.
dydx=ddx(2cos1x)=2×11x2=21x2\therefore \,\,\,\,\dfrac{dy}{dx}\,\,\,=\,\,\,\dfrac{d}{dx}(2{{\cos }^{-1}}x)\,\,=\,\,2\times \dfrac{-1}{\sqrt{1-{{x}^{2}}}}\,\,\,=\,\,\,\dfrac{-2}{\sqrt{1-{{x}^{2}}}} \left\\{ \because \,\dfrac{d}{dx}({{\cos }^{-1}}x)\,\,=\,\,\dfrac{-1}{\sqrt{1-{{x}^{2}}}} \right\\}
Hence dydx=21x2\dfrac{dy}{dx}\,=\,\dfrac{-2}{\sqrt{1-{{x}^{2}}}}
Now dzdx\dfrac{dz}{dx}:
This function can be differentiated by using the chain rule of differentiation.
As z=1x2z\,=\,\sqrt{1-{{x}^{2}}}
dzdx=ddx(1x2)=11x2×(02x)=2x1x2\Rightarrow \,\,\dfrac{dz}{dx}\,=\,\dfrac{d}{dx}(\sqrt{1-{{x}^{2}}})\,=\,\dfrac{1}{\sqrt{1-{{x}^{2}}}}\times \,(0-2x)\,=\,\,\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}
Now as we know that dydz=dy/dxdz/dx=f(x)g(x)\dfrac{dy}{dz}\,\,=\,\,\dfrac{dy/dx}{dz/dx}\,\,\,=\,\,\,\dfrac{f'(x)}{g'(x)}
Hence, dydz=21x22x1x2=21x2×1x22x=1x\dfrac{dy}{dz}\,\,\,=\,\,\,\dfrac{\dfrac{-2}{\sqrt{1-{{x}^{2}}}}}{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}}\,\,\,=\,\,\,\dfrac{-2}{\sqrt{1-{{x}^{2}}}}\times \,\dfrac{\sqrt{1-{{x}^{2}}}}{-2x}\,\,\,=\,\,\,\dfrac{1}{x}
Now we need to find the value of dydz\dfrac{dy}{dz} at x=12x=\dfrac{1}{2}
(dydz)x=12=1(12)=2\therefore \,\,{{\left( \dfrac{dy}{dz} \right)}_{x=\dfrac{1}{2}}}\,\,=\,\,\,\dfrac{1}{\left( \dfrac{1}{2} \right)}\,\,=\,\,2
Hence, derivative of sec1(12x21){{\sec }^{-1}}\left( \dfrac{1}{2{{x}^{2}}-1} \right) with respect to 1x2\sqrt{1-{{x}^{2}}} at x=12x=\dfrac{1}{2} is equals to 22.

Note:
As inverse trigonometric functions are defined for a fixed domain so while operating with inverse trigonometric functions we should take care of its domain.
In the function sec1(secx){{\sec }^{-1}}(\sec x), if the domain is violating then suitable addition or subtracting must be done so that in sec1(secx){{\sec }^{-1}}(\sec x)its input i.e.,x\in \left[ 0,\pi \right]\,-\,\left\\{ \dfrac{\pi }{2} \right\\}
So that we can write sec1(secx)=x{{\sec }^{-1}}(\sec x)\,\,=\,\,x.