Solveeit Logo

Question

Question: The derivative of \[\ln \left( {x + \sin x} \right)\] with respect to \[\left( {x + \cos x} \right)\...

The derivative of ln(x+sinx)\ln \left( {x + \sin x} \right) with respect to (x+cosx)\left( {x + \cos x} \right) is
(a) 1+cosx(x+sinx)(1sinx)\dfrac{{1 + \cos x}}{{\left( {x + \sin x} \right)\left( {1 - \sin x} \right)}}
(b) 1cosx(x+sinx)(1+sinx)\dfrac{{1 - \cos x}}{{\left( {x + \sin x} \right)\left( {1 + \sin x} \right)}}
(c) 1cosx(xsinx)(1+cosx)\dfrac{{1 - \cos x}}{{\left( {x - \sin x} \right)\left( {1 + \cos x} \right)}}
(d) 1+cosx(xsinx)(1cosx)\dfrac{{1 + \cos x}}{{\left( {x - \sin x} \right)\left( {1 - \cos x} \right)}}

Explanation

Solution

Here, we need to find the derivative of ln(x+sinx)\ln \left( {x + \sin x} \right) with respect to (x+cosx)\left( {x + \cos x} \right). Let u=ln(x+sinx)u = \ln \left( {x + \sin x} \right) and v=(x+cosx)v = \left( {x + \cos x} \right). We will differentiate these two equations with respect to xx to find the value of dudx\dfrac{{du}}{{dx}} and dvdx\dfrac{{dv}}{{dx}}. Using these values, we can find the value of dudv\dfrac{{du}}{{dv}}, and hence, the derivative of ln(x+sinx)\ln \left( {x + \sin x} \right) with respect to (x+cosx)\left( {x + \cos x} \right).
Formula Used: The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is d[f(x)+g(x)]dx=d[f(x)]dx+d[g(x)]dx\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}.

Complete step by step solution:
Let u=ln(x+sinx)u = \ln \left( {x + \sin x} \right) and v=(x+cosx)v = \left( {x + \cos x} \right).
We need to find d[ln(x+sinx)]d(x+cosx)\dfrac{{d\left[ {\ln \left( {x + \sin x} \right)} \right]}}{{d\left( {x + \cos x} \right)}}, that is dudv\dfrac{{du}}{{dv}}.
We will differentiate the equations u=ln(x+sinx)u = \ln \left( {x + \sin x} \right) and v=(x+cosx)v = \left( {x + \cos x} \right).
First, we will differentiate both sides of u=ln(x+sinx)u = \ln \left( {x + \sin x} \right) with respect to xx.
Differentiating both sides, we get
dudx=d[ln(x+sinx)]dx\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{d\left[ {\ln \left( {x + \sin x} \right)} \right]}}{{dx}}
The derivative of ln[f(x)]\ln \left[ {f\left( x \right)} \right] is 1f(x)×d[f(x)]dx\dfrac{1}{{f\left( x \right)}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}.
Therefore, we get
dudx=1x+sinx×d(x+sinx)dx\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{x + \sin x}} \times \dfrac{{d\left( {x + \sin x} \right)}}{{dx}}
The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is d[f(x)+g(x)]dx=d[f(x)]dx+d[g(x)]dx\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}.
Therefore, the equation becomes
dudx=1x+sinx×[d(x)dx+d(sinx)dx]\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{x + \sin x}} \times \left[ {\dfrac{{d\left( x \right)}}{{dx}} + \dfrac{{d\left( {\sin x} \right)}}{{dx}}} \right]
The derivative of xx with respect to xx is 1.
The derivative of sinx\sin x with respect to xx is cosx\cos x.
Therefore, the equation becomes
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{x + \sin x}} \times \left[ {1 + \cos x} \right] \\\ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{1 + \cos x}}{{x + \sin x}} \\\
Now, we will differentiate both sides of v=(x+cosx)v = \left( {x + \cos x} \right) with respect to xx.
Differentiating both sides, we get
dvdx=d(x+cosx)dx\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{{d\left( {x + \cos x} \right)}}{{dx}}
Therefore, the equation becomes
dvdx=d(x)dx+d(cosx)dx\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{{d\left( x \right)}}{{dx}} + \dfrac{{d\left( {\cos x} \right)}}{{dx}}
The derivate of xx with respect to xx is 1.
The derivative of cosx\cos x with respect to xx is sinx - \sin x.
Therefore, the equation becomes
\Rightarrow \dfrac{{dv}}{{dx}} = 1 + \left( { - \sin x} \right) \\\ \Rightarrow \dfrac{{dv}}{{dx}} = 1 - \sin x \\\
Now, we will find the value of dudv\dfrac{{du}}{{dv}}.
Multiplying and dividing the expression by dxdx, we get
dudv=dudv×dxdx\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{du}}{{dv}} \times \dfrac{{dx}}{{dx}}
Rewriting the expression, we get
\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dv}} \\\ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{du}}{{dx}} \times \dfrac{1}{{\dfrac{{dv}}{{dx}}}} \\\
Substituting dudx=1+cosxx+sinx\dfrac{{du}}{{dx}} = \dfrac{{1 + \cos x}}{{x + \sin x}} and dvdx=1sinx\dfrac{{dv}}{{dx}} = 1 - \sin x in the equation, we get
\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dv}} \\\ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{1 + \cos x}}{{x + \sin x}} \times \dfrac{1}{{1 - \sin x}} \\\
Therefore, we get
dudv=1+cosx(x+sinx)(1sinx)\therefore \dfrac{{du}}{{dv}} = \dfrac{{1 + \cos x}}{{\left( {x + \sin x} \right)\left( {1 - \sin x} \right)}}
Therefore, we get the derivative of ln(x+sinx)\ln \left( {x + \sin x} \right) with respect to (x+cosx)\left( {x + \cos x} \right) as 1+cosx(x+sinx)(1sinx)\dfrac{{1 + \cos x}}{{\left( {x + \sin x} \right)\left( {1 - \sin x} \right)}}.

Thus, the correct option is option (a).

Note:
You should remember to use the chain rule of differentiation. A common mistake is to write the derivative of ln(x+sinx)\ln \left( {x + \sin x} \right) as 1x+sinx\dfrac{1}{{x + \sin x}}. This is incorrect. According to the chain rule, the derivative of a function lnf(x)\ln f\left( x \right) is given as d[ln(f(x))]dx×d[f(x)]dx×d[x]dx\dfrac{{d\left[ {\ln \left( {f\left( x \right)} \right)} \right]}}{{dx}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} \times \dfrac{{d\left[ x \right]}}{{dx}}.