Question
Mathematics Question on Second Order Derivative
The derivative of eaxcosbx with respect to x is reax cos(bx−Tan−1ab) When a>0,b>0,the value of r is ............
A
ab
B
a+b
C
a2+b2
D
ab1
Answer
a2+b2
Explanation
Solution
Given, dxd(eaxcosbx)=reaxcos(bx+α), then
r=?
Let y=eax⋅cosbx
Let y=eax⋅cosbx
dxdy=aeax⋅cosbx−beax⋅sinbx
dxdy=eax(acosbx−bsinbx)
a=r \cos \alpha
b=r \sin \alpha\\}...(i)
Then, dxdy=eax⋅rcosbx⋅cosα−sinbx⋅sinα
dxdy=eax⋅rcos(bx+α)...(ii)
Where, tanα=ab⇒α=tan−1(ab)
and r2(cos2α+sin2α)=a2+b2
r2=a2+b2
r=a2+b2