Question
Question: The derivative of \[{\csc ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right)\] with respect to \[\sqrt...
The derivative of csc−1(2x2−11) with respect to 1−x2 at x=21 is
Solution
Here, we will take that h=csc−1(2x2−11) and g=1−x2. Then we will use that when h is differentiated with respect to g, we have to calculate the value of dgdh. After differentiating h with respect to x and g with respect to x, we will divide them to find the required value.
Complete step-by-step answer:
Let us assume that h=csc−1(2x2−11) and g=1−x2.
We know that when h is differentiated with respect to g, we have to calculate the value of dgdh.
Differentiating the equation h with respect to x, we get
⇒dxdh=dxd(csc−1(2x2−11))
Using the property, csc−1x=sin−1(x1) in the above equation, we get
Using the value, dxdcos−1x=1−x21 in the above equation, we get
\dfrac{2}{{\sqrt {1 - {x^2}} }}{\text{ , if 0 < x < 1}} \\\ \dfrac{{ - 2}}{{\sqrt {1 - {x^2}} }}{\text{ , if - 1 < x < 0}} \\\ \right.{\text{ ......eq.(1)}}$$ Differentiating the equation $$g$$ with respect to $$x$$, we get $$ \Rightarrow \dfrac{{dg}}{{dx}} = \dfrac{d}{{dx}}\left( {\sqrt {1 - {x^2}} } \right)$$ Using the property, $$\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$$ in the above equation, we get $$ \Rightarrow \dfrac{{dg}}{{dx}} = \dfrac{{ - x}}{{\sqrt {1 - {x^2}} }}{\text{ ......eq.(2)}}$$ Dividing the equation (1) by equation (2), we get\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
\dfrac{2}{{\sqrt {1 - {x^2}} }} \times \dfrac{{\sqrt {1 - {x^2}} }}{{ - x}}{\text{ , if 0 < x < 1}} \\
\dfrac{{ - 2}}{{\sqrt {1 - {x^2}} }} \times \dfrac{{\sqrt {1 - {x^2}} }}{{ - x}}{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
\dfrac{2}{{ - x}}{\text{ , if 0 < x < 1}} \\
\dfrac{{ - 2}}{{ - x}}{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
- \dfrac{2}{x}{\text{ , if 0 < x < 1}} \\
\dfrac{2}{x}{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow {\left. {\dfrac{{dh}}{{dg}}} \right|{x = \dfrac{1}{2}}} = - \dfrac{2}{{\dfrac{1}{2}}} \\
\Rightarrow {\left. {\dfrac{{dh}}{{dg}}} \right|{x = \dfrac{1}{2}}} = - 4 \\