Solveeit Logo

Question

Mathematics Question on Differentiability

The derivative of cosec1(12x1x2)w.r.t1x2cosec^{-1} \left(\frac{1}{2x\sqrt{1-x^{2}}}\right) w.r.t \sqrt{1-x^{2}} is

A

11x2\frac{1}{\sqrt{1 - x^2}}

B

2x\frac{2}{x}

C

2x - \frac{2}{x}

D

11x2 - \frac{1}{ \sqrt{1 - x^2}}

Answer

2x - \frac{2}{x}

Explanation

Solution

Put x=sinθx = \sin\theta Let y=cosec1(12x1x2) y = cosec^{-1} \left(\frac{1}{2x \sqrt{1-x^{2}}}\right) =cosec1(12sinθcosθ)=cosec1= cosec ^{-1} \left(\frac{1}{2\sin \theta \cos\theta}\right) = cosec^{-1} (cosec2θ)=2θ\left(cosec 2 \theta\right) = 2 \theta dydz=dy/dθdz/dθ=2sinθ=2x \therefore \frac{dy}{dz} = \frac{dy/d\theta}{dz/d\theta} = \frac{2}{- \sin\theta} = -\frac{2}{x} z=1x2=1sin2θ=cosθz = \sqrt{1-x^{2}} = \sqrt{1-\sin^{2}\theta} = \cos\theta