Solveeit Logo

Question

Question: The derivative of \( \cos e{c^{ - 1}}(\dfrac{1}{{2{x^2} - 1}}) \) with respect to \( \sqrt {1 - {x^2...

The derivative of cosec1(12x21)\cos e{c^{ - 1}}(\dfrac{1}{{2{x^2} - 1}}) with respect to 1x2\sqrt {1 - {x^2}} at x=12x = \dfrac{1}{2} is:

Explanation

Solution

Hint : Use the formulas of differentiation for trigonometric values and of their inverse, some of the used formulas in this Question is 2cos2θ1=cos2θ2{\cos ^2}\theta - 1 = \cos 2\theta , 1cos2θ=sin2θ1 - {\cos ^2}\theta = {\sin ^2}\theta and many more, Put the appropriate values in the equations. And use of chain rule is important for these kinds of questions which ease the solving procedure.
Always prefer step by step solving rather than solving it an ounce.

Complete step-by-step answer :
Let u=u = cosec1(12x21)\cos e{c^{ - 1}}(\dfrac{1}{{2{x^2} - 1}}) and v=v = 1x2\sqrt {1 - {x^2}}
Let x=cosθx = \cos \theta and put this in uu and vv : ………..(i)
In u=u = cosec1(12x21)\cos e{c^{ - 1}}(\dfrac{1}{{2{x^2} - 1}})
Since, we know that 2cos2θ1=cos2θ2{\cos ^2}\theta - 1 = \cos 2\theta :
So, u=u = cosec1(1cos2θ) 1cos2θ=sec2θ   \cos e{c^{ - 1}}(\dfrac{1}{{\cos 2\theta }}) \\\ \dfrac{1}{{\cos 2\theta }} = \sec 2\theta \;
Since, 1cos2θ=sec2θ\dfrac{1}{{\cos 2\theta }} = \sec 2\theta
So, u=u = cosec1(sec2θ)\cos e{c^{ - 1}}(\sec 2\theta )
Differentiating uu with respect to θ\theta using chain rule (In which cosec1\cos e{c^{ - 1}} is differentiated then sec2θ\sec 2\theta and then 2θ2\theta ), we get:
dudθ=1sec22θ11sec22θ×sec2θtan2θ×2\dfrac{{du}}{{d\theta }} = \dfrac{{ - 1}}{{{{\sec }^2}2\theta \sqrt {1 - \dfrac{1}{{{{\sec }^2}2\theta }}} }} \times \sec 2\theta \tan 2\theta \times 2
On further solving, with different formulas step by step we get:
So,

dudθ=1sec22θsec22θ1sec22θ×sec2θtan2θ×2 dudθ=1sec22θtan22θsec22θ×sec2θtan2θ×2 dudθ=1sec22θtan22θsec22θ×sec2θtan2θ×2 dudθ=1sec22θ(tan2θsec2θ)×sec2θtan2θ×2 dudθ=2   \dfrac{{du}}{{d\theta }} = \dfrac{{ - 1}}{{{{\sec }^2}2\theta \sqrt {\dfrac{{{{\sec }^2}2\theta - 1}}{{{{\sec }^2}2\theta }}} }} \times \sec 2\theta \tan 2\theta \times 2 \\\ \dfrac{{du}}{{d\theta }} = \dfrac{{ - 1}}{{{{\sec }^2}2\theta \sqrt {\dfrac{{{{\tan }^2}2\theta }}{{{{\sec }^2}2\theta }}} }} \times \sec 2\theta \tan 2\theta \times 2 \\\ \dfrac{{du}}{{d\theta }} = \dfrac{{ - 1}}{{{{\sec }^2}2\theta |\sqrt {\dfrac{{{{\tan }^2}2\theta }}{{{{\sec }^2}2\theta }}|} }} \times \sec 2\theta \tan 2\theta \times 2 \\\ \dfrac{{du}}{{d\theta }} = \dfrac{{ - 1}}{{{{\sec }^2}2\theta ( - \dfrac{{\tan 2\theta }}{{\sec 2\theta }})}} \times \sec 2\theta \tan 2\theta \times 2 \\\ \dfrac{{du}}{{d\theta }} = 2 \;

Put x=cosθx = \cos \theta in vv and solve it:
v=v = 1x2=1cos2θ\sqrt {1 - {x^2}} = \sqrt {1 - {{\cos }^2}\theta }
Since, from the trigonometric identity we know that, 1cos2θ=sin2θ1 - {\cos ^2}\theta = {\sin ^2}\theta
So, v=v = 1cos2θ=sin2θ=sinθ\sqrt {1 - {{\cos }^2}\theta } = \sqrt {{{\sin }^2}\theta } = \sin \theta
Differentiating vv with respect to θ\theta , we get:
dvdθ=cosθ\dfrac{{dv}}{{d\theta }} = \cos \theta ………..(ii)
Put x=12x = \dfrac{1}{2} in (i) and further solving using the trigonometric formulas, we get:
12=cosθ cosθ=cosπ3 θ=π3  \dfrac{1}{2} = \cos \theta \\\ \cos \theta = \cos \dfrac{\pi }{3} \\\ \theta = \dfrac{\pi }{3} \\\
Put θ=π3\theta = \dfrac{\pi }{3} in (ii), we get:
dvdθ=cosθ (dvdθ)π3=cosπ3=12  \dfrac{{dv}}{{d\theta }} = \cos \theta \\\ {(\dfrac{{dv}}{{d\theta }})_{\dfrac{\pi }{3}}} = \cos \dfrac{\pi }{3} = \dfrac{1}{2} \\\
Since, we had to find dudv\dfrac{{du}}{{dv}} :
So, dudv=dudθdvdθ\dfrac{{du}}{{dv}} = \dfrac{{\dfrac{{du}}{{d\theta }}}}{{\dfrac{{dv}}{{d\theta }}}}
Put the values obtained earlier in this equation and we get:
dudv=dudθdvdθ=212=2×21=4\dfrac{{du}}{{dv}} = \dfrac{{\dfrac{{du}}{{d\theta }}}}{{\dfrac{{dv}}{{d\theta }}}} = \dfrac{2}{{\dfrac{1}{2}}} = \dfrac{{2 \times 2}}{1} = 4
So, (dudv)12=4{(\dfrac{{du}}{{dv}})_{\dfrac{1}{2}}} = 4
Therefore, the derivative of cosec1(12x21)\cos e{c^{ - 1}}(\dfrac{1}{{2{x^2} - 1}}) with respect to 1x2\sqrt {1 - {x^2}} at x=12x = \dfrac{1}{2} is: 44
So, the correct answer is “4”.

Note : Always remember the formula of differentiation of trigonometric values for easy solving.This contains various differentiation at various levels, so don’t get confused at different levels.At last always change or check the values at last before putting them into the last level.Remember the chain rule formula also. Any other formula would complicate the differentiation.