Solveeit Logo

Question

Question: The derivative of \[\cos^{3} x\] w.r.t \[\sin^{3} x\] is A) \[-\cot x\] B) \[\cot x\] C) \[\ta...

The derivative of cos3x\cos^{3} x w.r.t sin3x\sin^{3} x is
A) cotx-\cot x
B) cotx\cot x
C) tanx\tan x
D) tanx-\tan x

Explanation

Solution

Hint: In this question it is given that We have to find the derivative of cos3x\cos^{3} x w.r.t sin3x\sin^{3} x, i.e, dudv=(dudx)(dvdx)\dfrac{du}{dv} =\dfrac{\left( \dfrac{du}{dx} \right) }{\left( \dfrac{dv}{dx} \right) }.......(1)
Where u=cos3x\cos^{3} x and v=sin3x\sin^{3} x,
So to find the solution we have to first find the values of dudx and dvdx\dfrac{du}{dx} \ and\ \dfrac{dv}{dx}.
Complete step-by-step solution:
So first of all we are going to find the value of dudx\dfrac{du}{dx}.
Therefore,
dudx=ddx(cos3x)\dfrac{du}{dx} =\dfrac{d}{dx} \left( \cos^{3} x\right)
=3cos2xddx(cosx)3\cos^{2} x\cdot \dfrac{d}{dx} \left( \cos x\right) [ using chain rule]
=3cos2x(sinx)3\cos^{2} x\left( -\sin x\right) [ since,ddx(cosx)=sinx\dfrac{d}{dx} \left( \cos x\right) =-\sin x]
=3sinxcos2x-3\sin x\cos^{2} x.......(2)
Now,
dvdx=ddx(sin3x)\dfrac{dv}{dx} =\dfrac{d}{dx} \left( \sin^{3} x\right)
=3sin2x.ddx(sinx)3\sin^{2} x.\dfrac{d}{dx} \left( \sin x\right) [using chain rule]
=3sin2x.cosx3\sin^{2} x.\cos x....(3) [since, ddx(sinx)=cosx\dfrac{d}{dx} \left( \sin x\right) =\cos x]
Now by putting the values of dudx and dvdx\dfrac{du}{dx} \ and\ \dfrac{dv}{dx} in equation (1), we get,
dudv=(dudx)(dvdx)\dfrac{du}{dv} =\dfrac{\left( \dfrac{du}{dx} \right) }{\left( \dfrac{dv}{dx} \right) }
=3sinxcos2x3sin2xcosx\dfrac{-3\sin x\cos^{2} x}{3\sin^{2} x\cos x}
=cosxsinx-\dfrac{\cos x}{\sin x}
=cotx-\cot x [ since, cosxsinx=cotx\dfrac{\cos x}{\sin x} =\cot x]
So our required result is cotx-\cot x.
Hence the correct option is option A.
Note: While solving you need to know the basic formulas of derivative that we have already mentioned while solving also we have mentioned about chain rule which implies that, if ‘y’ be the function of ‘u’ and ‘u’ be the be the function of ‘x’, then
dydx=dydududx\dfrac{dy}{dx} =\dfrac{dy}{du} \cdot \dfrac{du}{dx}