Solveeit Logo

Question

Mathematics Question on Differentiability

The derivative of cos1(2x21)\cos^{-1} (2x^2 - 1) w.r.t cos1x\cos^{-1} x is

A

22

B

121x2\frac{-1}{2\sqrt{1 -x^2}}

C

2x\frac{2}{x}

D

1x21 - x^2

Answer

22

Explanation

Solution

Let u=cos1(2x21)u=\cos ^{-1}\left(2 x^{2}-1\right) and v=cos1xv=\cos ^{-1} \,x
Now, u=cos1(2x21)u=\cos ^{-1}\left(2 x^{2}-1\right)
Put x=cosθx=\cos \theta
u=cos1(2cos2θ1)\therefore \, u=\cos ^{-1}\left(2 \cos ^{2} \theta-1\right)
=cos1(cos2θ)=\cos ^{-1}(\cos 2 \theta)
=2θ=2cos1x=2 \theta=2 \cos ^{-1} \,x
Again, dudv=(dudx)(dvdx)\frac{d u}{d v}=\frac{\left(\frac{d u}{d x}\right)}{\left(\frac{d v}{d x}\right)}
=ddx(2cos1x)ddx(cos1x)=\frac{\frac{d}{d x}\left(2 \cos ^{-1} x\right)}{\frac{d}{d x}\left(\cos ^{-1} x\right)}
=(21x2)(11x2)=2=\frac{\left(-\frac{2}{\sqrt{1-x^{2}}}\right)}{\left(\frac{-1}{\sqrt{1-x^{2}}}\right)}=2