Solveeit Logo

Question

Question: The derivative of \({a^{\sec x}}\) with respect to \({a^{\tan x}}\) where \(a > 0\) is; \(\left( 1...

The derivative of asecx{a^{\sec x}} with respect to atanx{a^{\tan x}} where a>0a > 0 is;
(1)secxasecxtanx\left( 1 \right)\sec x{a^{\sec x - \tan x}}
(2)sinxatanxsecx\left( 2 \right)\sin x{a^{\tan x - \sec x}}
(3)sinxasecxtanx\left( 3 \right)\sin x{a^{\sec x - \tan x}}
(4)asecxtanx\left( 4 \right){a^{\sec x - \tan x}}

Explanation

Solution

We should be familiar with basic trigonometric identities and operation in order to solve this question. This question requires the knowledge of the concept of differentiation of one function with respect to another function. Let the two functions are f(x) and g(x)f\left( x \right){\text{ and g}}\left( x \right) respectively and according to the concept we have to calculate the value of df(x)dg(x)\dfrac{{df\left( x \right)}}{{dg\left( x \right)}} , which can also be written as [df(x)dxdg(x)dx]\left[ {\dfrac{{\dfrac{{df\left( x \right)}}{{dx}}}}{{\dfrac{{dg\left( x \right)}}{{dx}}}}} \right] means ultimately we have to calculate f(x)g(x)\dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} .

Complete step-by-step solution:
Since the two given functions have to be differentiated individually, therefore;
Let u=asecxu = {a^{\sec x}} and v=atanxv = {a^{\tan x}}
First , let us calculate the value of dudx and dvdx\dfrac{{du}}{{dx}}{\text{ and }}\dfrac{{dv}}{{dx}};

Let us first find out the differentiation of uu with respect to xx ;
(ddxax=axlogea)\left( {\because \dfrac{d}{{dx}}{a^x} = {a^x}{{\log }_e}a} \right)
And also (ddxsecx=secxtanx)\left( {\because \dfrac{d}{{dx}}\sec x = \sec x\tan x} \right)
Using the above formulae and applying the chain rule of differentiation, we get;
dudx=asecxlogeasecxtanx ......(1)\Rightarrow \dfrac{{du}}{{dx}} = {a^{\sec x}}{\log _e}a\sec x\tan x{\text{ }}......\left( 1 \right)
Let us now find out dvdx\dfrac{{dv}}{{dx}} by differentiating vv with respect to xx ;
(ddxtanx=sec2x)\left( {\because \dfrac{d}{{dx}}\tan x = {{\sec }^2}x} \right)
dvdx=atanxlogeasec2x ......(2)\Rightarrow \dfrac{{dv}}{{dx}} = {a^{\tan x}}{\log _e}a{\sec ^2}x{\text{ }}......\left( 2 \right)
Now according to the question we have to differentiate u=asecxu = {a^{\sec x}} with respect to atanx{a^{\tan x}} , means we have to find out dudv\dfrac{{du}}{{dv}} ; therefore dividing equation (1)\left( 1 \right) by equation (2)\left( 2 \right), we get;
dudxdvdx=asecxlogeasecxtanx atanxlogeasec2x\Rightarrow \dfrac{{\dfrac{{du}}{{dx}}}}{{\dfrac{{dv}}{{dx}}}} = \dfrac{{{a^{\sec x}}{{\log }_e}a\sec x\tan x{\text{ }}}}{{{a^{\tan x}}{{\log }_e}a{{\sec }^2}x}}
On further simplifying the above equation, we get;
dudv=asecxtanxatanxsecx\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{{a^{\sec x}}\tan x}}{{{a^{\tan x}}\sec x}}
(tanx=sinxcosx and secx=1cosx)\left( {\because \tan x = \dfrac{{\sin x}}{{\cos x}}{\text{ and }}\because \sec x = \dfrac{1}{{\cos x}}} \right)
Therefore, the above equation can be further simplified as;
dudv=asecx×sinxcosxatanx×1cosx\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{{a^{\sec x}} \times \dfrac{{\sin x}}{{\cos x}}}}{{{a^{\tan x}} \times \dfrac{1}{{\cos x}}}}
Cancellation of cosx\cos x in the numerator and denominator of R.H.S. ;
dudv=asecx×sinxatanx\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{{a^{\sec x}} \times \sin x}}{{{a^{\tan x}}}}
dudv=sinxasecxatanx\Rightarrow \dfrac{{du}}{{dv}} = \sin x{a^{\sec x}}{a^{ - \tan x}}
The above equation can also be written as;
dudv=sinxasecxtanx\Rightarrow \dfrac{{du}}{{dv}} = \sin x{a^{\sec x - \tan x}}
Therefore the differentiation of asecx{a^{\sec x}} with respect to atanx{a^{\tan x}} is sinxasecxtanx\sin x{a^{\sec x - \tan x}} .
Hence the correct answer for this question is option (3)\left( 3 \right) .

Note: The knowledge of standard formulae for derivatives of exponential functions makes the problem solving easier in questions like this. Listed here are some standard derivative formulae: (1)\left( 1 \right) For exponential functions: (a)ddxex=ex\left( a \right)\dfrac{d}{{dx}}{e^x} = {e^x} (b)ddxax=ln(a)ax\left( b \right)\dfrac{d}{{dx}}{a^x} = \ln \left( a \right){a^x} . (2)\left( 2 \right) For logarithmic functions: (a)ddxln(x)=1x\left( a \right)\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x} , (b)ddxlogax=1(xln(a))\left( b \right)\dfrac{d}{{dx}}{\log _a}x = \dfrac{1}{{\left( {x\ln \left( a \right)} \right)}} . The function ex{e^x} has a special property, it’s derivative is the function itself.