Solveeit Logo

Question

Question: The density of a 3 M \(N{{a}_{2}}{{S}_{2}}{{O}_{3}}\)solution is \(1.25\text{ }g\text{ }m{{l}^{-1}}\...

The density of a 3 M Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}}solution is 1.25 g ml11.25\text{ }g\text{ }m{{l}^{-1}}. Calculate the percentage by mass of Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}}and molalities of Na+N{{a}^{+}}and S2O32{{S}_{2}}{{O}_{3}}^{2-}ions.

Explanation

Solution

The mass percentage of Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}} can be calculated using the mass of the 3M solution of Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}} and mass of 1000ml of Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}} solution. Moles of water and moles of Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}} can give us the mole fraction. The molality of cations and anions formed by dissociation of Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}} can be calculated using the moles of Na+N{{a}^{+}},S2O32{{S}_{2}}{{O}_{3}}^{2-} and mass of water (in kg).

Complete step by step solution:
-According to question,
Molarity of Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}}= 3M
-The density of sodium thiosulfate Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}}solution = 1.25 g/mL
We can calculate the mass of 1000mL of sodium thiosulfate solution using the density given to us.
Mass of 1000mL of sodium thiosulfate (Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}}) solution:
Density=MassVolume Mass=Density×Volume =1.25 g mL1×1000mL=1250g \begin{aligned} & Density=\dfrac{Mass}{Volume} \\\ & \Rightarrow Mass=Density\times Volume \\\ & =1.25\text{ g m}{{\text{L}}^{-1}}\times 1000mL=1250g \\\ \end{aligned}
-Calculating the mass of Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}} using the molar mass and molarity of the solution.
As we know,
Mass=Molarity×Molar massMass=Molarity\times \text{Molar mass}
Mass of Na2S2O3=3M×158gmol1=474gN{{a}_{2}}{{S}_{2}}{{O}_{3}}=3M\times 158gmo{{l}^{-1}}=474g
-Using the mass of 1000ml of Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}}, we can calculate the mass percentage of Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}}.
The formula to calculate the mass percentage is,
Mass percentage = Mass of solute (in g)Mass of solution (in g)×100%\text{Mass percentage = }\dfrac{\text{Mass of solute (in g)}}{\text{Mass of solution (in g)}}\times 100\%
The mass percentage of Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}} =474g1250g×100%=37.92%=\dfrac{474g}{1250g}\times 100\%=37.92\%
-Molalities of Na+N{{a}^{+}} and S2O32{{S}_{2}}{{O}_{3}}^{2-}can be calculated using the number of moles and mass of water (in kg).
1Na2S2O32Na++1S2O321N{{a}_{2}}{{S}_{2}}{{O}_{3}}\to 2N{{a}^{+}}+1{{S}_{2}}{{O}_{3}}^{2-}
Moles of Na2S2O3=Given mass(g)Molar mass=474158g/mol=3molN{{a}_{2}}{{S}_{2}}{{O}_{3}}=\dfrac{\text{Given mass(g)}}{\text{Molar mass}}=\dfrac{474}{158g/mol}=3mol
We shall calculate the mass of water by subtracting the mass of 1000mL of Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}} solution from the mass of 3M Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}}.
Mass of water = Mass of 1000 mL of the solution – Mass of 3M Na2S2O3N{{a}_{2}}{{S}_{2}}{{O}_{3}}
Mass of water = 1250 – 474g = 776g
The number of moles of sodium cation is calculated as,
Number of moles of Na+=2× Number of moles of Na2S2O3=2×3=6molesN{{a}^{+}}=2\times \text{ Number of moles of }N{{a}_{2}}{{S}_{2}}{{O}_{3}}=2\times 3=6moles
Therefore, the molality of sodium ions =Number of moles of Na+ionsMass of water (in kg)=6mol776g×100=7.73m=\dfrac{\text{Number of moles of N}{{\text{a}}^{+}}ions}{\text{Mass of water (in kg)}}=\dfrac{6mol}{776g}\times 100=7.73m
The molarity of S2O32=Number of moles of S2O32ionsMass of water (in kg)=3mol776g×1000=3.865m{{S}_{2}}{{O}_{3}}^{2-}=\dfrac{\text{Number of moles of }{{\text{S}}_{2}}{{O}_{3}}^{2-}\text{ions}}{\text{Mass of water (in kg)}}=\dfrac{3mol}{776g}\times 1000=3.865m

Note: The molality as a measure of concentration depends on the masses of solute and solvent which are affected by changes in temperature and pressure. In contrast, volumetrically prepared solutions such as molar concentration or mass concentration are subjected to change concerning temperature and pressure change. In several applications, this offers a major advantage as the mass of the amount of a substance is often more necessary than its volume. Another advantage of molality is that molality of one solute in a solution is independent of the absence or presence of other solutes in the solution.