Solveeit Logo

Question

Question: The density of 3M sodium thiosulfate solution \(\left( {N{a_2}{S_2}{O_3}} \right)\) is \(1.25\,g/mL\...

The density of 3M sodium thiosulfate solution (Na2S2O3)\left( {N{a_2}{S_2}{O_3}} \right) is 1.25g/mL1.25\,g/mL. Calculate (i) the percentage of mass of sodium thiosulfate, (ii) the mole fraction of sodium thiosulfate and (iii) molalities of Na+N{a^ + } and S2O32{S_2}{O_3}^{2 - } ions.

Explanation

Solution

We can calculate the mass percentage of Na2S2O3N{a_2}{S_2}{O_3} using the mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution and mass of 1000mL of Na2S2O3N{a_2}{S_2}{O_3} solution. We can calculate the mole fraction using the moles of water and the moles of Na2S2O3N{a_2}{S_2}{O_3}. We can calculate the molality of Na+N{a^ + } and S2O32{S_2}{O_3}^{2 - } ions using the moles of Na+N{a^ + } and S2O32{S_2}{O_3}^{2 - } and mass of water (in kg).

Complete step by step answer:

Given,
Molarity of sodium thiosulfate solution is 3M.
The density of sodium thiosulfate solution is 1.25g/mL1.25\,g/mL.
(i)
We can calculate the mass of 1000mL of Na2S2O3N{a_2}{S_2}{O_3} solution using density of the solution as,
Mass of 1000mL of Na2S2O3N{a_2}{S_2}{O_3} solution=1.25gmL×1000mL11.25\,\dfrac{g}{{mL}} \times \dfrac{{1000\,mL}}{{1\,}}
Mass of 1000mL of Na2S2O3N{a_2}{S_2}{O_3} solution=1250g1250\,g
Mass of 1000mL of Na2S2O3N{a_2}{S_2}{O_3} solution is 1250g1250\,g.
Let us now calculate the mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution using the molar mass and molarity of the solution.
We know that the molar mass of Na2S2O3N{a_2}{S_2}{O_3} is 158gmol1158\,g\,mo{l^{ - 1}}.
The mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution is calculated as,
Mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution=Molarity×MolarmassofNa2S2O3Molarity \times Molar\,mass\,of\,N{a_2}{S_2}{O_3}
Mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution=3M×158gmol3\,M \times 158\,\dfrac{g}{{mol}}
Mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution=474g474\,g
The mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution is 474g474\,g.
Finally, we can calculate the mass percentage of Na2S2O3N{a_2}{S_2}{O_3} using the mass of 1000mL of Na2S2O3N{a_2}{S_2}{O_3} solution and mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution.
The formula to calculate the mass percentage is,
Mass percentage=Massofsolute(ing)Massofsolution(ing)×100%\dfrac{{Mass\,of\,solute\left( {in\,g} \right)}}{{Mass\,of\,solution\left( {in\,g} \right)}} \times 100\%
The mass percentage of Na2S2O3N{a_2}{S_2}{O_3} is calculated as,
The mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution is 474g474\,g.
Mass of 1000mL of Na2S2O3N{a_2}{S_2}{O_3} solution is 1250g1250\,g.
Mass percentage=474g1250g×100%\dfrac{{474\,g}}{{1250g}} \times 100\%
Mass percentage=37.92%37.92\%
The mass percentage of Na2S2O3N{a_2}{S_2}{O_3} is 37.92%37.92\% .
(ii)
Let us calculate the mole fraction of Na2S2O3N{a_2}{S_2}{O_3}
In order to find the mole fraction, we should know the moles of Na2S2O3N{a_2}{S_2}{O_3} and moles of water. We can find the moles using their weight and molar masses.
We know that the molar mass of Na2S2O3N{a_2}{S_2}{O_3} is 158gmol1158\,g\,mo{l^{ - 1}}.
The mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution is calculated as,
Mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution=Molarity×MolarmassofNa2S2O3Molarity \times Molar\,mass\,of\,N{a_2}{S_2}{O_3}
Mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution=3M×158gmol3\,M \times 158\,\dfrac{g}{{mol}}
Mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution=474g474\,g
The mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution is 474g474\,g.
From the calculated mass, let us now calculate the moles of Na2S2O3N{a_2}{S_2}{O_3}.
Moles of Na2S2O3N{a_2}{S_2}{O_3}=Mass(ing)Molarmass\dfrac{{Mass\left( {in\,g} \right)}}{{Molar\,mass}}
Moles of Na2S2O3N{a_2}{S_2}{O_3}=474g158g/mol\dfrac{{474\,g}}{{158\,g/mol}}
Moles of Na2S2O3N{a_2}{S_2}{O_3}=3mol3\,mol
The moles of Na2S2O3N{a_2}{S_2}{O_3} is 3mol.3\,mol.
We can calculate the mass of 1000mL of Na2S2O3N{a_2}{S_2}{O_3} solution using density of the solution as,
Mass of 1000mL of Na2S2O3N{a_2}{S_2}{O_3} solution=1.25gmL×1000mL11.25\,\dfrac{g}{{mL}} \times \dfrac{{1000\,mL}}{{1\,}}
Mass of 1000mL of Na2S2O3N{a_2}{S_2}{O_3} solution=1250g1250\,g
Mass of 1000mL of Na2S2O3N{a_2}{S_2}{O_3} solution is 1250g1250\,g.
Now, we shall calculate the mass of water by subtracting the mass of 1000mL of Na2S2O3N{a_2}{S_2}{O_3} solution to the mass of Na2S2O3N{a_2}{S_2}{O_3}.
Mass of water=Mass of 1000mL of solution - Massof3MNa2SO3{\text{Mass of 1000mL of solution - Mass}}\,\,{\text{of}}\,{\text{3M}}\,{\text{N}}{{\text{a}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{3}}}
Mass of water=1250g - 474g{\text{1250}}\,{\text{g - 474}}\,{\text{g}}
Mass of water=776g{\text{776}}\,{\text{g}}
The mass of water is 776g{\text{776}}\,{\text{g}}.
From this we shall calculate the moles of water as,
The molar mass of water is 18g/mol18\,g/mol.
Moles of water=Mass(ing)Molarmass\dfrac{{Mass\left( {in\,g} \right)}}{{Molar\,mass}}
Moles of water=776g18g/mol\dfrac{{776\,g}}{{18\,g/mol}}
Moles of water=43.1mol43.1\,\,mol
The moles of water is 43.1mol43.1\,\,mol.
The mole fraction of Na2S2O3N{a_2}{S_2}{O_3} is calculated using the moles of Na2S2O3N{a_2}{S_2}{O_3} and the total moles.
The formula to calculate mole fraction of Na2S2O3N{a_2}{S_2}{O_3} is,
Mole fraction of Na2S2O3N{a_2}{S_2}{O_3}=MolesofNa2SO3MolesofNa2S2O3 + MolesofH2O\dfrac{{{\text{Moles}}\,{\text{of}}\,{\text{N}}{{\text{a}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{3}}}}}{{{\text{Moles}}\,{\text{of}}\,{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{ + Moles}}\,{\text{of}}\,{{\text{H}}_{\text{2}}}{\text{O}}}}
Mole fraction of Na2S2O3N{a_2}{S_2}{O_3}=3mol3mol+43.1mol\dfrac{{3\,mol}}{{3\,mol + 43.1\,mol}}
Mole fraction of Na2S2O3N{a_2}{S_2}{O_3}=3mol46.1mol\dfrac{{3\,mol}}{{46.1\,mol}}
Mole fraction of Na2S2O3N{a_2}{S_2}{O_3}=0.065{\text{0}}{\text{.065}}
The mole fraction of Na2S2O3N{a_2}{S_2}{O_3} is 0.065{\text{0}}{\text{.065}}.
(iii)
We can find the molalities of Na+N{a^ + } and S2O32{S_2}{O_3}^{2 - } ions using the number of moles and mass of water (in kg).
1Na2S2O32Na++1S2O321\,N{a_2}{S_2}{O_3}\xrightarrow{{}}2N{a^ + } + 1{S_2}{O_3}^{2 - }
The mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution is calculated as,
Mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution=Molarity×MolarmassofNa2S2O3Molarity \times Molar\,mass\,of\,N{a_2}{S_2}{O_3}
Mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution=3M×158gmol3\,M \times 158\,\dfrac{g}{{mol}}
Mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution=474g474\,g
The mass of Na2S2O3N{a_2}{S_2}{O_3} of 3M solution is 474g474\,g.
From the calculated mass, let us now calculate the moles of Na2S2O3N{a_2}{S_2}{O_3}.
Moles of Na2S2O3N{a_2}{S_2}{O_3}=Mass(ing)Molarmass\dfrac{{Mass\left( {in\,g} \right)}}{{Molar\,mass}}
Moles of Na2S2O3N{a_2}{S_2}{O_3}=474g158g/mol\dfrac{{474\,g}}{{158\,g/mol}}
Moles of Na2S2O3N{a_2}{S_2}{O_3}=3mol3\,mol
The moles of Na2S2O3N{a_2}{S_2}{O_3} is 3mol.3\,mol.
Now, we shall calculate the mass of water by subtracting the mass of 1000mL of Na2S2O3N{a_2}{S_2}{O_3} solution to the mass of 3M Na2S2O3N{a_2}{S_2}{O_3}.
Mass of water=Mass of 1000mL of solution - Massof3MNa2SO3{\text{Mass of 1000mL of solution - Mass}}\,\,{\text{of}}\,{\text{3M}}\,{\text{N}}{{\text{a}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{3}}}
Mass of water=1250g - 474g{\text{1250}}\,{\text{g - 474}}\,{\text{g}}
Mass of water=776g{\text{776}}\,{\text{g}}
The mass of water is 776g{\text{776}}\,{\text{g}}.
The number of moles of Na+N{a^ + } is calculated as,
Number of moles of Na+N{a^ + } ion=2 X NoofmolesofNa2S2O3{\text{2 X No}}\,{\text{of}}\,{\text{moles}}\,{\text{of}}\,{\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}
Number of moles of Na+N{a^ + } ion=2 X 3{\text{2 X 3}}
Number of moles of Na+N{a^ + } ion=6{\text{6}}
Therefore, we can calculate the molality of sodium ions as,
Molality of sodium ions=NoofmolesofNa+ionsMassofwater(inkg)\dfrac{{No\,of\,moles\,of\,N{a^ + }\,ions}}{{Mass\,of\,water\left( {in\,kg} \right)}}
Molality of sodium ions=6mol776g×1000\dfrac{{6\,mol}}{{776\,g}} \times 1000
Molality of sodium ions=7.73m7.73\,m
The molality of sodium ions is 7.73m7.73\,m.
The molality of S2O32{S_2}{O_3}^{2 - } will be calculated as,
Molality of S2O32{S_2}{O_3}^{2 - }=NoofmolesofS2O32ionsMassofwater(inkg)\dfrac{{No\,of\,moles\,of\,{S_2}{O_3}^{2 - }\,ions}}{{Mass\,of\,water\left( {in\,kg} \right)}}
Molality of S2O32{S_2}{O_3}^{2 - }=3mol776g×1000\dfrac{{3\,mol}}{{776\,g}} \times 1000
Molality of S2O32{S_2}{O_3}^{2 - }=3.865m3.865\,m
The molality of S2O32{S_2}{O_3}^{2 - } is 3.865m3.865\,m.

Note:
We have to know the primary advantage of using molality as a measure of concentration is that molality depends on the masses of solute and solvent that are unaffected by changes in temperature and pressure.
In contrast, solutions that are prepared volumetrically such as molar concentration or mass concentration are subjected to change with respect to temperature and pressure change. In several applications, this is a major advantage because the mass, or the amount, of a substance is often more necessary than its volume.
Another advantage of molality is that the molality of one solute in a solution is independent of the absence (or) presence of other solutes.