Solveeit Logo

Question

Question: The density of \(3 \mathrm{M}\) sodium thiosulphate solution \(\left(\mathrm{Na}_{2} \mathrm{S}_{2} ...

The density of 3M3 \mathrm{M} sodium thiosulphate solution (Na2S2O3)\left(\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}\right) is 1.25g/ml1.25 \mathrm{g} / \mathrm{ml}. Calculate i) the percentage by mass of sodium thiosulphate, ii) the mole fraction of sodium thiosulphate and iii) molalities of Na+\mathrm{Na}^{+} and S2O32\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} ions.

Explanation

Solution

From density we will find out the mass of the solution. Then, mass% from it by dividing the mass found by total mass and multiplying with 100.
Given is 3 M.
Molality of Na+\mathrm{Na}^{+} ions == (No. of moles of Na+\mathrm{Na}^{+} ions/ Mass of water in kg\mathrm{kg} ) X1000.\mathrm{X} 1000 . Mole fraction of Na2S2O3=(\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}=( Mole of Na2S2O3)/(\left.\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}\right) /\left(\right. Mole of Na2S2O3+\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}+ Mole of water ))

Complete step by step solution:
-The molar mass to be calculated of Na2S2O3\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3} is 158g158 \mathrm{g}.
i) Mass of 1000mL1000 \mathrm{mL} of Na2S2O3\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3} solution =1.25×1000=1250g=1.25 \times 1000=1250 \mathrm{g}
Mass of Na2S2O3\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3} in 1000ml1000 \mathrm{ml} of 3M3 \mathrm{M} solution =3X=3 \mathrm{X} Molar mass of Na2S2O3\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}

=3X158g=474g=3 \mathrm{X} 158 \mathrm{g}=474 \mathrm{g}

Mass percentage of Na2S2O3\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3} in solution =(474/1250)X100=(474 / 1250) \mathrm{X} 100

=37.92%=37.92 \%

ii) No. of moles of Na2S2O3=(3X\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}=\left(3 \mathrm{X}\right. Molar mass of Na2S2O3)/\left.\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}\right) / molar mass of Na2S2O3\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}

=474/158=474 / 158

= 3.
​Mass of water = (1250−474) = 776g
Now, the molar mass of water as we know is 18g.
Thus, No. of moles of water = (776 / 18)g
= 43
Mole fraction of Na2S2O3=(\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}=\left(\right. Mole of Na2S2O3)/(\left.\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}\right) /\left(\right. Mole of Na2S2O3+\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}+ Mole of water ))

=3/(43+3)=0.065=3 /(43+3)=0.065

iii) Number of Na+\mathrm{Na}^{+} ions =2X=2 \mathrm{X} No. of moles of Na2S2O3\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}

=2×3=6=2 \times 3=6

Molality of Na+\mathrm{Na}^{+} ions =(=\left(\right. No. of moles of Na+\mathrm{Na}^{+} ions // Mass of water in kg)X1000\left.\mathrm{kg}\right) \mathrm{X} 1000

=(6/776)×1000=7.73m=(6 / 776) \times 1000=7.73 \mathrm{m}

Number of Moles of S2O32\mathrm{S}_{2} \mathrm{O}_{3}^{2-} ions == number of moles of Na2S2O3\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}

=3=3

Molality of S2O32\mathrm{S}_{2} \mathrm{O}_{3}^{2-} ions =(=\left(\right. No. of moles of S2O32\mathrm{S}_{2} \mathrm{O}_{3}^{2-} ions // Mass of water in kg)X1000\left.\mathrm{kg}\right) \mathrm{X} 1000

=(3/776)×1000=3.86m=(3 / 776) \times 1000=3.86 \mathrm{m}

The answers are i)37.92 %, ii)0.065 iii)7.73 m, 3.86 m.

Note: Molality of S2O32\mathrm{S}_{2} \mathrm{O}_{3}^{2-} ions =(=\left(\right. No. of moles of S2O32\mathrm{S}_{2} \mathrm{O}_{3}^{2-} ions // Mass of water in kg)X\left.\mathrm{kg}\right) \mathrm{X}
1000. Molality of Na+\mathrm{Na}^{+} ions == (No. of moles of Na+\mathrm{Na}^{+} ions // Mass of water in kg\mathrm{kg} ) X1000\mathrm{X} 1000