Solveeit Logo

Question

Microeconomics Question on Consumer theory

The demand function (QxDQ^D_x) and supply function (QxS)(Q^S_x) are given as:
QxD=f(Px,I) and QxS=g(Px,A)Q^D_x=f(P_x,I)\ and\ Q^S_x=g(P_x,A) where I (Income) and A (Advertisement expenses) are the exogenous factors affecting quantity demanded and supplied, respectively. Further, fPx<0,gPx>0\frac{\partial f}{\partial P_x}\lt0,\frac{\partial g}{\partial P_x}\gt0 but fI\frac{\partial f}{\partial I} and gA\frac{\partial g}{\partial A} may have any sign. Considering that there exists an equilibrium (QxD=QxS=Q)(Q_x^D=Q_x^S=Q), which of the following is/are CORRECT?

A

ePxA=(gAAQ)/(fPxPxQgPxPxQ)e_{P_xA}=(\frac{\partial g}{\partial A}\frac{A}{Q})/(\frac{\partial f}{\partial P_x}\frac{P_x}{Q}-\frac{\partial g}{\partial P_x}\frac{P_x}{Q})

B

dPxdA=(gA)/(fPxgPx)\frac{dP_x}{dA}=(\frac{\partial g}{\partial A})/(\frac{\partial f}{\partial P_x}-\frac{\partial g}{\partial P_x})

C

ePxI=(gIIQ)/(fPxPxQgPxPxQ)e_{P_xI}=(\frac{\partial g}{\partial I}\frac{I}{Q})/(\frac{\partial f}{\partial P_x}\frac{P_x}{Q}-\frac{\partial g}{\partial P_x}\frac{P_x}{Q})

D

The sign of dPxdA\frac{dP_x}{dA} does not depend on gA\frac{\partial g}{\partial A}.

Answer

ePxA=(gAAQ)/(fPxPxQgPxPxQ)e_{P_xA}=(\frac{\partial g}{\partial A}\frac{A}{Q})/(\frac{\partial f}{\partial P_x}\frac{P_x}{Q}-\frac{\partial g}{\partial P_x}\frac{P_x}{Q})

Explanation

Solution

The correct option is (A): ePxA=(gAAQ)/(fPxPxQgPxPxQ)e_{P_xA}=(\frac{\partial g}{\partial A}\frac{A}{Q})/(\frac{\partial f}{\partial P_x}\frac{P_x}{Q}-\frac{\partial g}{\partial P_x}\frac{P_x}{Q}) and (B): dPxdA=(gA)/(fPxgPx)\frac{dP_x}{dA}=(\frac{\partial g}{\partial A})/(\frac{\partial f}{\partial P_x}-\frac{\partial g}{\partial P_x})