Solveeit Logo

Question

Mathematics Question on Differential equations

The degree of the differential equation x=1+(dydx)+12!(dydx)2+13!(dydx)3+.........x = 1+\left(\frac{dy}{dx}\right)+\frac{1}{2!}\left(\frac{dy}{dx}\right)^{2}+\frac{1}{3!}\left(\frac{dy}{dx}\right)^{3} + .........

A

3

B

2

C

1

D

not defined

Answer

1

Explanation

Solution

x=1+(dydx)+12!(dydx)2+13!(dydx)3+x=1+\left(\frac{d y}{d x}\right)+\frac{1}{2 !}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{3 !}\left(\frac{d y}{d x}\right)^{3}+\ldots
[ex=1+x+x22!+x33!+x44!+]\left[\because e^{x}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right]
x=edydx\therefore x=e^{\frac{d y}{d x}}
logex=dydx\Rightarrow \log _{e} x=\frac{d y}{d x}
[After taking log on both sides]
Hence, degree of differential equation is =1=1