Solveeit Logo

Question

Mathematics Question on Differential equations

The degree of the differential equation satisfying the relation1+x2+1+y2=λ(x1+y2y1+x2)is\sqrt{1+x^2}+\sqrt{1+y^2}=\lambda(x\sqrt{1+y^2}-y\sqrt{1+x^2}) is

A

1

B

2

C

3

D

none of these.

Answer

1

Explanation

Solution

Putting x=tanAx = tan \,A, y=tanBy = tan\, B, we get secA+secB=λ(tanAsecBtanBsecA)sec\, A + sec \,B = \lambda (tan\, A \,sec\, B - tan\, B\, sec\, A) cosA+cosBcosAcosB=λ(sinAcosAcosBsinBcosAcosB)\Rightarrow \frac{cosA + cosB}{cosA \,cosB} = \lambda \left(\frac{sinA}{cosA \,cosB}-\frac{sinB}{cosA \,cosB}\right) cosA+cosB=λ(sinAsinB)\Rightarrow cos\, A + cos \,B = \lambda \left(sin \,A - sin \,B\right) 2cosA+B2cosAB2\Rightarrow 2\,cos \frac{A+B}{2} cos \frac{A-B}{2} = λ.2cosA+B2sinAB2\lambda.2 cos\frac {A+B}{2}sin \frac {A-B}{2} tanAB2=1λ\Rightarrow tan \frac{A-B}{2} = \frac{1}{\lambda} AB=2tan1(1λ)=\Rightarrow A -B = 2\,tan^{-1}\left(\frac{1}{\lambda}\right) = constant tan1xtan1y=\Rightarrow tan^{-1} \,x - tan^{-1} \,y = constant 11+x211+y2dydx=0\Rightarrow \frac{1}{1+x^{2}}- \frac{1}{1+y^{2}} \frac{dy}{dx} = 0 dydx=1+y21+x2\Rightarrow \frac{dy}{dx} = \frac{1+y^{2}}{1+x^{2}}This is of degree 11.