Solveeit Logo

Question

Question: The degree of dissociation of SO3 is \(\alpha\) at equilibrium pressure P0 . Kp for 2SO3(g) \(\righ...

The degree of dissociation of SO3 is α\alpha at equilibrium pressure P0 .

Kp for 2SO3(g) \rightleftharpoons 2SO2(g) + O2(g) is

A

[(P0α3)/2(1 - α)3]\lbrack(P_{0}\alpha^{3})\text{/2}(\text{1 - }\alpha)^{3}\rbrack

B

[(P0α3)/(2+α)(1α)2]\left\lbrack \left( P_{0}\alpha^{3} \right)/(2 + \alpha)(1 - \alpha)^{2} \right\rbrack

C

[(P0α2)/2(1 - α)2]\lbrack(P_{0}\alpha^{2})\text{/2}(\text{1 - }\alpha)^{2}\rbrack

D

None of these

Answer

[(P0α3)/(2+α)(1α)2]\left\lbrack \left( P_{0}\alpha^{3} \right)/(2 + \alpha)(1 - \alpha)^{2} \right\rbrack

Explanation

Solution

2SO3(g) \rightleftharpoons 2SO2 (g) + O2(g)

t=0 a 0 0

t=teq. a(1α)a(1 - \alpha) aα\alpha a(α2)a\left( \frac{\alpha}{2} \right)

Total mole at eq. =a(1+α2)= a\left( 1 + \frac{\alpha}{2} \right)

PSO3=(1α1+(α/2))P0[(1α)2+α]×P0;PSO2=(α1+(α/2))P0=(2α2+α)×P0PO2=(α/21+(α/2))P0P_{SO_{3}} = \left( \frac{1 - \alpha}{1 + (\alpha/2)} \right)P_{0}\left\lbrack \frac{(1 - \alpha)}{2 + \alpha} \right\rbrack \times P_{0};P_{SO_{2}} = \left( \frac{\alpha}{1 + (\alpha/2)} \right)P_{0} = \left( \frac{2\alpha}{2 + \alpha} \right) \times P_{0}PO_{2} = \left( \frac{\alpha/2}{1 + (\alpha/2)} \right)P_{0}

KP=4α2(P0)2(2+α)2×(α2+α)×P04(1α)2[2+α]2×(P0)2=[α3P0(2+α)(1α)2]K_{P} = \frac{\frac{4\alpha^{2}\left( P^{0} \right)^{2}}{(2 + \alpha)^{2}} \times \left( \frac{\alpha}{2 + \alpha} \right) \times P^{0}}{\frac{4(1 - \alpha)^{2}}{\lbrack 2 + \alpha\rbrack^{2}} \times \left( P_{0} \right)^{2}} = \left\lbrack \frac{\alpha^{3}P^{0}}{(2 + \alpha)(1 - \alpha)^{2}} \right\rbrack.