Solveeit Logo

Question

Question: The degree of dissociation of \[PC{l_5}\] (g) obeying the equilibrium, \[PC{l_5}{\text{ }} \rightlef...

The degree of dissociation of PCl5PC{l_5} (g) obeying the equilibrium, PCl5  PCl3+ Cl2PC{l_5}{\text{ }} \rightleftharpoons {\text{ }}PC{l_3} + {\text{ }}C{l_2}, is approximately related to the pressure at equilibrium by:
A α  P\alpha {\text{ }}\infty {\text{ }}P
B α 1P\alpha {\text{ }}\infty \dfrac{1}{{\sqrt P }}
C α 1P2\alpha {\text{ }}\infty \dfrac{1}{{{P^2}}}
D α 1P4\alpha {\text{ }}\infty \dfrac{1}{{{P^4}}}

Explanation

Solution

At equilibrium the forward and backward reaction rates become the same. As a result, equilibrium constant can be written as the ratio of product side concentration to reactant side concentration.

Complete step by step answer:
For a reversible reaction at a situation when the amount of product formed is equal to the amount of reactant is formed then it is called equilibrium. At equilibrium the amount of product and reactant concentration become constant.
Now for the reaction PCl5  PCl3+ Cl2PC{l_5}{\text{ }} \rightleftharpoons {\text{ }}PC{l_3} + {\text{ }}C{l_2}, let the degree of dissociation of PCl5PC{l_5} is \alpha{\text{\alpha }}. And let the initial mole of PCl5PC{l_5} is 1 mole. Therefore, at equilibrium the number of moles of PCl5PC{l_5} and PCl3PC{l_3} and Cl2C{l_2}are 1α1 - \alpha ,α\alpha and α\alpha respectively . P is the total pressure in equilibrium.
At equilibrium the total number of moles is

1α+α+α =1+α  1 - \alpha + \alpha + \alpha \\\ = 1 + \alpha \\\

Now at equilibrium the mole fractions of PCl5PC{l_5} and PCl3PC{l_3}, Cl2C{l_2}are1α1+α\dfrac{{1 - \alpha }}{{1 + \alpha }},α1+α\dfrac{\alpha }{{1 + \alpha }}and α1+α\dfrac{\alpha }{{1 + \alpha }} respectively.
Now according to the Dalton’s law of partial pressure is Pi=xiP{P_i} = {x_i}P
At equilibrium The partial pressures of PCl5PC{l_5} and PCl3PC{l_3} ,Cl2C{l_2}arePPCl5=1α1+αP{P_{PC{l_5}}} = \dfrac{{1 - \alpha }}{{1 + \alpha }}P,PPCl3=α1+αP{P_{PC{l_3}}} = \dfrac{\alpha }{{1 + \alpha }}Pand PCl2=α1+αP{P_{C{l_2}}} = \dfrac{\alpha }{{1 + \alpha }}P respectively. Where α2<1{\alpha ^2} < 1.
There fore the equilibrium constant is,

KP=[PCl3][Cl2][PCl5] KP=[α1+αP][α1+αP][1α1+αP] KP=[α1+α]2[P]2[1α1+α]P  {K_P} = \dfrac{{\left[ {PC{l_3}} \right]\left[ {C{l_2}} \right]}}{{\left[ {PC{l_5}} \right]}} \\\ {K_P} = \dfrac{{\left[ {\dfrac{\alpha }{{1 + \alpha }}P} \right]\left[ {\dfrac{\alpha }{{1 + \alpha }}P} \right]}}{{\left[ {\dfrac{{1 - \alpha }}{{1 + \alpha }}P} \right]}} \\\ {K_P} = \dfrac{{{{\left[ {\dfrac{\alpha }{{1 + \alpha }}} \right]}^2}{{\left[ P \right]}^2}}}{{\left[ {\dfrac{{1 - \alpha }}{{1 + \alpha }}} \right]P}} \\\ KP=α2[P](1α)(1+α) KP=α2[P](1α2) KP=α2[P](1) α2=KPP α=KPP α1P  {K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1 - \alpha )(1 + \alpha )}} \\\ {K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1 - {\alpha ^2})}} \\\ {K_P} = \dfrac{{{\alpha ^2}\left[ P \right]}}{{(1)}} \\\ {\alpha ^2} = \dfrac{{{K_P}}}{P} \\\ \alpha = \sqrt {\dfrac{{{K_P}}}{P}} \\\ \alpha \infty \dfrac{1}{{\sqrt P }} \\\

So, the correct option is B.

Note:
For a reaction, A+2B2CA + 2B \rightleftharpoons 2C let, the rate constant of forward reaction is Kf{K_f} and the rate constant for backward reaction is   kb\;{k_b}. therefore, the rates of forward and backward reactions are,
Rf=kf[A][B]2{R_f} = {k_f}\left[ A \right]{\left[ B \right]^2}and  Rb=kb[C]2{\text{ }}{R_b} = {k_b}{\left[ C \right]^2}respectively. Now, at equilibrium the forward and backward reaction rates become the same. Therefore, the equilibrium constant is ,

Rf= Rb or, kf[A][B]2=kb[C]2 or,kfkb=[C]2[A][B]2 keq=[C]2[A][B]2  {R_f} = {\text{ }}{R_b} \\\ or,{\text{ }}{k_f}\left[ A \right]{\left[ B \right]^2} = {k_b}{\left[ C \right]^2} \\\ or,\dfrac{{{k_f}}}{{{k_b}}} = \dfrac{{{{\left[ C \right]}^2}}}{{\left[ A \right]{{\left[ B \right]}^2}}} \\\ {k_{eq}} = \dfrac{{{{\left[ C \right]}^2}}}{{\left[ A \right]{{\left[ B \right]}^2}}} \\\