Question
Question: The degree of dissociation of \[{I_2}\] molecules at \({1000^0}C\) and under atmospheric pressure is...
The degree of dissociation of I2 molecules at 10000C and under atmospheric pressure is 40% by volume. The total pressure on the gas at equilibrium so that dissociation is reduced to 20% at the same temperature, will be.
A. 4.57 atm
B. 2.83 atm
C. 5.33 atm
D. 7.57 atm
Solution
Hint- In order to solve the problem use the concept of equilibrium. Consider the degree of dissociation as some unknown value at the given temperature. Then find the total number of moles of both the dissociated particles in terms of the same unknown variable and use the values given in question and take atmospheric pressure as 1 atm.
Complete answer:
As we know that
I2 dissociates as
I2⇌2I
If x is the degree of dissociation at 10000C under atmospheric pressure, then
Initial concentration: [I2]=1,I=0
At equilibrium I2=1−x,I=2x
The total number of moles at equilibrium =1−x+2x=1+x
Partial pressure of I2 and I will be
{K_p} = \dfrac{{{{\left( {{P_I}} \right)}^2}}}{{{P_{{I_2}}}}} = \dfrac{{{{\left( {\dfrac{{\left( {2x} \right)p}}{{\left( {1 + x} \right)}}} \right)}^2}}}{{\dfrac{{\left( {1 - x} \right)p}}{{\left( {1 + x} \right)}}}} \\
{K_p} = \dfrac{{{{\left( {2x} \right)}^2}{p^2}\left( {1 + x} \right)}}{{\left( {1 - x} \right)p{{\left( {1 + x} \right)}^2}}} \\
{K_p} = \dfrac{{{{\left( {2x} \right)}^2}p}}{{\left( {1 - {x^2}} \right)}}.............(1) \\
\because {K_p} = \dfrac{{{{\left( {2x} \right)}^2}p}}{{\left( {1 - {x^2}} \right)}} \\
\Rightarrow {K_p} = \dfrac{{{{\left( {2 \times 0.4} \right)}^2} \times 1}}{{\left( {1 - {{\left( {0.4} \right)}^2}} \right)}} \\
\Rightarrow {K_p} = \dfrac{{{2^2} \times {{0.4}^2} \times 1}}{{\left( {1 + 0.4} \right)\left( {1 - 0.4} \right)}} \\
\Rightarrow {K_p} = \dfrac{{4 \times 0.16 \times 1}}{{1.4 \times 0.6}} \\
\Rightarrow {K_p} = 0.76 \\
\because {K_p} = \dfrac{{{{\left( {2x} \right)}^2}p}}{{\left( {1 - {x^2}} \right)}} \\
\Rightarrow 0.76 = \dfrac{{{{\left( {2 \times 0.2} \right)}^2}P}}{{\left( {1 - {{\left( {0.2} \right)}^2}} \right)}} \\
\Rightarrow 0.76 = \dfrac{{{2^2} \times {{0.2}^2} \times P}}{{\left( {1 + 0.2} \right)\left( {1 - 0.2} \right)}} \\
\Rightarrow 0.76 = \dfrac{{4 \times 0.04 \times P}}{{1.2 \times 0.8}} \\
\Rightarrow P = \dfrac{{0.76 \times 1.2 \times 0.8}}{{4 \times 0.04}} \\
\Rightarrow P = 4.57atm \\