Solveeit Logo

Question

Question: The degree of association can be defined as the number of moles of a particular substance associated...

The degree of association can be defined as the number of moles of a particular substance associated per more of the substance taken.
For example: If out of 10 moles of  N2 \text{ }{{\text{N}}_{\text{2}}}\text{ } ​, 3 moles of  N2 \text{ }{{\text{N}}_{\text{2}}}\text{ }combine with  H2 \text{ }{{\text{H}}_{\text{2}}}\text{ } ​ to form  NH3 \text{ N}{{\text{H}}_{\text{3}}}\text{ } ​, then the degree of association of  N2 = 0.3 \text{ }{{\text{N}}_{\text{2}}}\text{ = 0}\text{.3 }

Consider the equilibrium situation:  N2(g)+2H2(g)2NH3(g) !! !! \text{ }{{\text{N}}_{\text{2}}}\left( \text{g} \right)\text{+2}{{\text{H}}_{\text{2}}}\left( \text{g} \right)\rightleftharpoons \text{2N}{{\text{H}}_{\text{3}}}\left( \text{g} \right)\text{ }\\!\\!~\\!\\!\text{ } initially  N2 \text{ }{{\text{N}}_{\text{2}}}\text{ }​ &  H2 \text{ }{{\text{H}}_{\text{2}}}\text{ }were mixed in  1 : 3 \text{ }1\text{ }:\text{ }3\text{ } molar ratio and after a long time the mean molar mass of the mixture was found to be  343 g \text{ }\frac{34}{3}\text{ g }. The degree of association of  N2 \text{ }{{\text{N}}_{\text{2}}}\text{ }​ is________.
A) 0.5 \text{ 0}\text{.5 }
B) 0.4 \text{ 0}\text{.4 }
C) 0.9 \text{ 0}\text{.9 }
D) 0.25 \text{ 0}\text{.25 }

Explanation

Solution

The degree of association is the fraction of the total number of molecules which combine to form a bigger molecule. For a general reaction,  nA  (A)n \text{ nA }\rightleftharpoons \text{ (A}{{\text{)}}_{\text{n}}}\text{ } the number of effective moles is equal to the sum of the number of moles of the product and the reactant. The mean molar mass is equal to the calculated molar mass to the effective number of moles at equilibrium.

Complete Solution :
- There are many organic solutes which in non-aqueous solutions undergo association that is two or more molecules of the solute associated to form a bigger molecule. Thus, the number of effective molecules or particles decreases, and consequently the colligative properties are less than the calculated based on single molecules.
- Consider ammonia gas  N2 \text{ }{{\text{N}}_{\text{2}}}\text{ } reacts with hydrogen gas  H2 \text{ }{{\text{H}}_{\text{2}}}\text{ } to form an ammonia molecule  NH3 \text{ N}{{\text{H}}_{\text{3}}}\text{ } . Initially, at a time ‘0’ one mole of nitrogen gas reacts with 3 moles of hydrogen gas.at zero time no ammonia gas is formed.
- At the time  teq \text{ }{{\text{t}}_{\text{eq}}}\text{ } the  (1x) \text{ (1}-\text{x) } moles of nitrogen gas reacts with (33x) \left( \text{3}-3\text{x} \right)\text{ } hydrogen gas and forms  2x \text{ 2x } moles of ammonia gas. The association reaction of ammonia is as shown below,
 N2(g)+2H2(g)2NH3(g) t=0130 t=teq(1x)(33x)2x  \text{ }\begin{matrix} {} & {{\text{N}}_{\text{2}}}\text{(g)} & \text{+} & \text{2}{{\text{H}}_{\text{2}}}\text{(g)} & \rightleftharpoons & \text{2N}{{\text{H}}_{\text{3}}}\text{(g)} \\\ \text{t=0} & 1 & {} & 3 & {} & 0 \\\ \text{t=}{{\text{t}}_{\text{eq}}} & \left( 1-\text{x} \right) & {} & \left( 3-3\text{x} \right) & {} & 2\text{x} \\\ \end{matrix}\text{ }
Let x be the degree of association. Then,
The number of effective moles is equal to the sum of the moles of at the equilibrium .the number of effective moles are calculated as follows,
 The number of effective moles = (1x)+(33x)+2x = 42\text{ The number of effective moles = }\left( 1-\text{x} \right)+\left( 3-3\text{x} \right)+2\text{x = 4}-2\text{x }

- Since the colligative properties are proportional to the number of moles .therefore the mean molar mass of the mixture is equal to the ratio of the sum of normal molar mass to the total number of moles at equilibrium.it is denoted as,
 mean molar mass = 2x×17+(33x)×2+(1x)×28(42x) \text{ }\,\text{mean molar mass = }\dfrac{2x\times 17+\left( 3-3\text{x} \right)\times 2+\left( 1-\text{x} \right)\times 28}{\left( 4-2\text{x} \right)}\text{ }
We are given the molar mass of the mixture as  343 g \text{ }\dfrac{34}{3}\text{ g } . Let's calculate the value of ‘x’ which is the degree of association for the reaction.it is,
 343 = 2x×17+(33x)×2+(1x)×28(42x)  34×(42x) = 3×(2x×17+(33x)×2+(1x)×28) 13668x = 102x + 18x 18x + 8484x  68x = 34  x = 3468 = 0.5  \begin{aligned} & \text{ }\dfrac{34}{3}\text{ = }\dfrac{2\text{x}\times 17+\left( 3-3\text{x} \right)\times 2+\left( 1-\text{x} \right)\times 28}{\left( 4-2\text{x} \right)}\text{ } \\\ & \Rightarrow 34\times \left( 4-2\text{x} \right)\text{ = 3}\times \left( 2\text{x}\times 17+\left( 3-3\text{x} \right)\times 2+\left( 1-\text{x} \right)\times 28 \right) \\\ & \Rightarrow 136-68\text{x = 102x + 18x }-18\text{x + 84}-\text{84x} \\\ & \Rightarrow \text{ 68x = 34 } \\\ & \therefore \text{x = }\dfrac{\text{34}}{\text{68}}\text{ = 0}\text{.5 } \\\ \end{aligned}
Thus the degree of dissociation of  N2 \text{ }{{\text{N}}_{\text{2}}}\text{ } is  0.5 \text{ 0}\text{.5 } .
So, the correct answer is “Option A”.

Note: Note that generally the association of molecules to form an associated molecule is written as  nA  (A)n \text{ nA }\rightleftharpoons \text{ (A}{{\text{)}}_{\text{n}}}\text{ } where n is the number of molecules combining. Thus the number of moles of the associated molecule is generally written as  αn \text{ }\dfrac{\alpha }{n}\text{ } . Here association reaction results in one molecule only thus n are takes like 1.