Question
Question: The decomposition of \( {{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}} \) at \( {\text{318K}} \) acc...
The decomposition of N2O5 at 318K according to the following equation follows first order reaction:
N2O5(g)→2NO2(g) + 21O2(g)
The initial concentration of N2O5 was 1.24×10 - 2molL - 1 and after 60 minutes was 0.20×10 - 2molL - 1 . Calculate the rate constant of the reaction at 318K .
Solution
If the rate constant of a reaction is dependent only upon one concentration term, then it is said to be a first order reaction.
The expression for the rate constant for a reaction of first order from concentration of the reactant after some time ‘t’ is given by the following expression:
k = t2.303log[A][A]0
where k is the rate constant of the reaction, t is equal to the time taken for the process of decay of the reactant, [A0] is equal to the initial concentration of the reactant and [A] is equal to the concentration of the reactant after time ‘t’.
Complete step by step solution:
Given that the reaction of decomposition of N2O5 is a first order reaction.
Also given that the initial concentration of N2O5 is equal to 1.24×10 - 2molL - 1 .
And that after some time which was equal to 60 minutes, the concentration of N2O5 is 0.20×10 - 2molL - 1 .
The temperature is given to be equal to 318K .
We need to calculate the value of the rate constant for this decomposition reaction of N2O5 .
Now, according to the question, the reactant is N2O5 . So, the initial concentration of N2O5 , [A0] is equal to 1.24×10 - 2molL - 1 .
The time taken for decomposition is equal to 60 minutes. So after t = 60min , the concentration of N2O5 , [A] is equal to 0.20×10 - 2molL - 1 .
Now put the values of [A0]=1.24×10−2molL−1 , [A]=0.20×10−2molL−1 and t=60min in the expression for first order rate constant mentioned above. So we will now have:
k=60min2.303log0.20×10−2molL−11.24×10−2molL−1
The units of concentration will get cancelled and we will have min - 1 as the unit of the rate constant k.
So,
k=602.303log0.201.24⇒k=602.303×0.7924⇒k=0.03041min−1
Hence, the value of the rate constant is found to be k = 0.03041min - 1 .
Note:
The unit of k for a first order reaction depends upon only the unit of time ‘t’, it is independent of the units of the concentrations. The half-life of a reaction is the time taken by the reaction to undergo reduction to half of the initial value of the reactant. For a first order reaction, it is:
t21=k0.693