Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

The decomposition of A into product has value of k as 4.5×103s14.5 \times 10^3 s^{-1} at 10°C10°C and energy of activation 60 kJmol160\ kJ mol^{-1 }. At what temperature would k be 1.5×104s11.5 \times 10^4 s^{-1}?

Answer

From Arrhenius equation, we obtainFrom \ Arrhenius \ equation,\ we \ obtain

log k2k1=Ea2.303 R(T2T1T1T2)log \ \frac {k_2}{k_1} = \frac {E_a}{2.303\ R}(\frac {T_2-T_1}{T_1T_2})

Also,Also, k1=4.5×103s1k_1 = 4.5 × 10^3 s^{-1}
T1=273+10=283 KT_1 = 273 + 10 = 283 \ K
k2=1.5×104s1k_2 = 1.5 \times 10^4 s^{-1}
Ea=60 kJmol1=6.0×104Jmol1E_a = 60 \ kJ mol^{-1} = 6.0 \times 10^4 J mol^{-1}
Then,Then,

log 1.5×1044.×103log \ \frac {1.5 \times 10^4}{4. \times 10^3} = 6.0×104Jmol12.303×8.314 jK1mol1\frac {6.0 \times 10^4 J mol^{-1}}{2.303 \times 8.314 \ j K^{-1} mol^{-1}} (T2283283 T2)(\frac {T_2-283}{283\ T_2})

0.5229=3133.6270.5229 = 3133.627 (T2283283 T2)(\frac {T_2-283}{283\ T_2})

0.5229×283 T23133.627\frac {0.5229 \times 283 \ T_2}{3133.627} = T2283T_2 - 283

0.0472 T2=T22830.0472 \ T_2 = T_2-283
0.9528 T2=2830.9528 \ T_2 = 283
T2=297.019 KT_2 = 297.019 \ K (approximately)(approximately)
T2=297 KT_2 = 297\ K
T2=24°CT_2 = 24°C
Hence, k would beHence,\ k \ would\ be 1.5×104s11.5 \times 10^4 s^{-1} at 24°C24°C.