Solveeit Logo

Question

Question: The de-Broglie wavelength of a particle moving with a velocity 2.25 × 10<sup>8</sup> m/s is equal to...

The de-Broglie wavelength of a particle moving with a velocity 2.25 × 108 m/s is equal to the wavelength of photon. The ratio of kinetic energy of the particle to the energy of the photon is (velocity of light is 3 × 108 m/s)

A

1/8

B

3/8

C

5/8

D

7/8

Answer

3/8

Explanation

Solution

Kparticle=12mv2K_{\text{particle}} = \frac{1}{2}mv^{2} also λ=hmv\lambda = \frac{h}{mv}

Kparticle=12(hλv).v2=vh2λ\Rightarrow K_{\text{particle}} = \frac{1}{2}\left( \frac{h}{\lambda v} \right).v^{2} = \frac{vh}{2\lambda} ...(i)

Kphoton=hcλK_{\text{photon}} = \frac{hc}{\lambda} ...(ii)

KparticleKphoton=v2c=2.25×1082×3×108=38\therefore\frac{K_{\text{particle}}}{K_{\text{photon}}} = \frac{v}{2c} = \frac{2.25 \times 10^{8}}{2 \times 3 \times 10^{8}} = \frac{3}{8}