Solveeit Logo

Question

Question: The de Broglie wavelength \(\lambda\)of an electron accelerated through a potential V in Volts is:...

The de Broglie wavelength λ\lambdaof an electron accelerated through a potential V in Volts is:

A

1.227Vnm\frac{1.227}{\sqrt{V}}nm

B

0.1227Vnm\frac{0.1227}{\sqrt{V}}nm

C

0.01227Vnm\frac{0.01227}{\sqrt{V}}nm

D

0.1227Vnm\frac{0.1227}{\sqrt{V}}nm

Answer

1.227Vnm\frac{1.227}{\sqrt{V}}nm

Explanation

Solution

: Consider an electron of mass m and charge e accelerated from rest through potential V. then

K=eVK = eV

K=12mv2=p22mp=2mk=2mevK = \frac{1}{2}mv^{2} = \frac{p^{2}}{2m}\therefore p = \sqrt{2mk} = \sqrt{2mev}

The de Broglie wavelength λ\lambdaof the electron is

λ=hp=h2mk=h2meV\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mk}} = \frac{h}{\sqrt{2meV}}

Substituting the numerical values of h, m, e, we get

λ=6.63×10342×9.1×1031×1.6×1019×V\lambda = \frac{6.63 \times 10^{- 34}}{\sqrt{2 \times 9.1 \times 10^{- 31} \times 1.6 \times 10^{- 19} \times V}}

=1.227×109Vm=1.227Vnm= \frac{1.227 \times 10^{- 9}}{\sqrt{V}}m = \frac{1.227}{\sqrt{V}}nm