Question
Question: The D.E. whose solution is \(y = ax + b{e^x}\) : \[\eqalign{ & A)\,\,\,(x - 1){y_2} - x{y_1} +...
The D.E. whose solution is y=ax+bex :
& A)\,\,\,(x - 1){y_2} - x{y_1} + y = 0 \cr & B)\,\,\,(x - 1){y_2} + x{y_1} = y \cr & C)\,\,\,{x^2}{y_2} - x{y_1} + y = 0 \cr & D)\,\,\,{x^2}{y_2} + x{y_1} - y = 0 \cr} $$Solution
We have to take the derivative of y w.r.t. x twice so that we can get at first y1=dxdy,Istorderderivativeofyw.r.t.x .Then y2=dx2d2y,2ndorderderivativeofyw.r.t.x .Observing to the options,we can form the required differential equation easily.
Complete step by step solution:
Step1: Given,y=ax+bex .
Step2: Taking first order derivative
\eqalign{
& {y_1} = \dfrac{d}{{dx}}(ax + b{e^x}) \cr
& \,\,\,\,\,\,\, = a + b{e^x} \cr}
Step3: Taking 2nd order derivative,
\eqalign{
& {y_2}\,\, = \dfrac{{{d^2}y}}{{d{x^2}}} \cr
& \,\,\,\,\,\,\, = \dfrac{d}{{dx}}({y_1}) \cr
& \,\,\,\,\,\,\, = \dfrac{d}{{dx}}(a + b{e^x}) \cr
& \,\,\,\,\,\,\,\, = b{e^x} \cr}
Step4: Find the values of a and b. From step-2 and step-3,
b=e−xy2anda=y1−y2
Step5: putting those values of a and b in y=ax+bex,
\eqalign{
& y = ({y_1} - {y_2})x + {e^{ - x}}{y_2}{e^x} \cr
& or,y = ({y_1} - {y_2})x + {y_2} \cr
& or,(x - 1){y_2} - x{y_1} + y = 0 \cr}
Hence option A) is correct here.
Note:
For quick process(applicable for MCQ only),after step 3, we have to form the differential equation.Putting the values of in L.H.S. of option A), we get
\eqalign{
& (x - 1){y_2} - x{y_1} + y \cr
& = (x - 1)b{e^x} - x(a + b{e^x}) + ax + b{e^x} \cr
& = b{e^x}(x - 1 - x + 1) - ax + ax \cr
& = 0 \cr
& Then,\,\,(x - 1){y_2} - x{y_1} + y = 0 \cr} .
If we see that option A) is false then we have to check if the second option is correct.In a similar way, we have to proceed further to check other options.