Solveeit Logo

Question

Question: The curves x<sup>2</sup>− 4y<sup>2</sup> + c = 0 and y<sup>2</sup> = 4x will intersect orthogonally ...

The curves x2− 4y2 + c = 0 and y2 = 4x will intersect orthogonally for

A

c ∈ (0, 16)

B

c ∈ (-3, 4)

C

c ∈ (3, 4)

D

None of these

Answer

None of these

Explanation

Solution

Curves will intersect if x2 - 16x + c = 0 has real roots.

Thus c ≤ 64. For x2 − 4y2 + c = 0, dydx=x4y\frac { d y } { d x } = \frac { x } { 4 y }

For y2 = 4x, dydx=2y\frac { d y } { d x } = \frac { 2 } { y } . If curves intersect orthogonally then x4y2y\frac { x } { 4 y } \cdot \frac { 2 } { y } = −1

⇒ x = −2y2 = −8x

⇒ x = 0 ⇒ y = 0. But if y = 0, slope of both curves are undefined.