Solveeit Logo

Question

Question: The curves C<sub>1</sub> : y = 1 - cosx, x ∈ (0, <span class="smallcaps">π)</span> and C<sub>2</sub>...

The curves C1 : y = 1 - cosx, x ∈ (0, π) and C2: y = 32\frac{\sqrt{3}}{2}|x| + a will touch each other if

A

a = 32π3\frac{3}{2} - \frac{\pi}{\sqrt{3}}

B

a = 32π23\frac{3}{2} - \frac{\pi}{2\sqrt{3}}

C

a =12π3\frac{1}{2} - \frac{\pi}{\sqrt{3}}

D

a = 34π3\frac{3}{4} - \frac{\pi}{\sqrt{3}}

Answer

a = 32π3\frac{3}{2} - \frac{\pi}{\sqrt{3}}

Explanation

Solution

Slope of C1 is sinx and for x > 0 slope of C2 is 32\frac { \sqrt { 3 } } { 2 }. Thus for x = 32\frac { \sqrt { 3 } } { 2 } ⇒ x = π3\frac { \pi } { 3 } or 2π3\frac { 2 \pi } { 3 }

Hence point of contact is (π3,12)\left( \frac { \pi } { 3 } , \frac { 1 } { 2 } \right) or (2π3,32)\left( \frac { 2 \pi } { 3 } , \frac { 3 } { 2 } \right)

For (π3,13)\left( \frac { \pi } { 3 } , \frac { 1 } { 3 } \right) we get a=12π23a = \frac { 1 } { 2 } - \frac { \pi } { 2 \sqrt { 3 } }

For (2π3,32)\left( \frac { 2 \pi } { 3 } , \frac { 3 } { 2 } \right) we get