Solveeit Logo

Question

Mathematics Question on limits and derivatives

The curve y=xexy = xe^x has minimum value equal to

A

1e - \frac{1}{e}

B

1e \frac{1}{e}

C

#NAME?

D

e

Answer

1e - \frac{1}{e}

Explanation

Solution

Let y=xexy = xe^x. Differentiate both side w.r.t. �xx�. dydx=ex+xex=ex(1+x)\Rightarrow \frac{dy}{dx} =e^{x} + xe^{x}=e^{x} \left(1+x\right) Put dydx=0\frac{dy}{dx} = 0 ex(1+x)=0 \Rightarrow e^{x}\left(1+x\right)=0 x=1\Rightarrow x=-1 Now, d2ydx2=ex+ex(1+x)=ex(x+2)\frac{d^{2}y}{dx^{2}} = e^{x} + e^{x} \left(1+x\right)=e^{x} \left(x+2\right) (d2ydx2)(x=1)=1e+0>0\left(\frac{d^{2}y}{dx^{2}}\right) _{\left(x=-1\right)} = \frac{1}{e} + 0>0 Hence, y=xexy = xe^x is minimum function and ymin=1ey_{\min} = - \frac{1}{e}